Advertisements
Advertisements
प्रश्न
Evaluate: `2(tan57°)/(cot33°) - (cot70°)/(tan20°) - sqrt(2) cos 45°`
उत्तर
`2(tan57°)/(cot33°) - (cot70°)/(tan20°) - sqrt(2) cos 45°`
= `2(tan(90° - 33°))/(cot33°) - (cot(90° - 20°))/(tan20°) - sqrt(2) (1/sqrt(2))`
= `2(cot33°)/(cot33°) - (tan20°)/(tan20°) - 1`
= 2 - 1 - 1
= 0.
APPEARS IN
संबंधित प्रश्न
if `cot theta = sqrt3` find the value of `(cosec^2 theta + cot^2 theta)/(cosec^2 theta - sec^2 theta)`
Evaluate.
`cos^2 26^@+cos65^@sin26^@+tan36^@/cot54^@`
Show that : `sin26^circ/sec64^circ + cos26^circ/(cosec64^circ) = 1`
Use tables to find sine of 21°
If \[\tan \theta = \frac{4}{5}\] find the value of \[\frac{\cos \theta - \sin \theta}{\cos \theta + \sin \theta}\]
If \[\tan A = \frac{3}{4} \text{ and } A + B = 90°\] then what is the value of cot B?
If tan2 45° − cos2 30° = x sin 45° cos 45°, then x =
If θ and 2θ − 45° are acute angles such that sin θ = cos (2θ − 45°), then tan θ is equal to
Prove that :
tan5° tan25° tan30° tan65° tan85° = \[\frac{1}{\sqrt{3}}\]
If sin θ + sin² θ = 1 then cos² θ + cos4 θ is equal ______.