Advertisements
Advertisements
प्रश्न
If \[\tan A = \frac{3}{4} \text{ and } A + B = 90°\] then what is the value of cot B?
उत्तर
Given that:
`A+B=90°`
`tan A=3/4`
A+B=90°
⇒B=90°-A
⇒ `cot B= cot (90°-A)`
⇒` cot B= tan A`
⇒`cot B=3/4[cot(90°-A)=tan A]`
Hence the value of cot B is `3/4`
APPEARS IN
संबंधित प्रश्न
Without using trigonometric tables, evaluate the following:
`( i)\frac{\cos37^\text{o}}{\sin53^\text{o}}\text{ }(ii)\frac{\sin41^\text{o}}{\cos 49^\text{o}}(iii)\frac{\sin30^\text{o}17'}{\cos59^\text{o}\43'}`
Prove the following trigonometric identities.
`((1 + cot^2 theta) tan theta)/sec^2 theta = cot theta`
Prove the following trigonometric identities.
(cosecθ + sinθ) (cosecθ − sinθ) = cot2 θ + cos2θ
Prove the following trigonometric identities.
(secθ + cosθ) (secθ − cosθ) = tan2θ + sin2θ
if `sqrt3 tan theta = 3 sin theta` find the value of `sin^2 theta - cos^2 theta`
Show that : sin 42° sec 48° + cos 42° cosec 48° = 2
Find the value of x, if sin x = sin 60° cos 30° + cos 60° sin 30°
Find the value of x, if tan x = `(tan60^circ - tan30^circ)/(1 + tan60^circ tan30^circ)`
Prove that:
`(cos(90^circ - theta)costheta)/cottheta = 1 - cos^2theta`
Use trigonometrical tables to find tangent of 42° 18'
Use trigonometrical tables to find tangent of 17° 27'
Use tables to find the acute angle θ, if the value of sin θ is 0.3827
∠ACD is an exterior angle of Δ ABC. If ∠B = 40o, ∠A = 70o find ∠ACD.
If \[\cos \theta = \frac{2}{3}\] find the value of \[\frac{\sec \theta - 1}{\sec \theta + 1}\]
If \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\] write the value of \[\frac{1 - \cos^2 \theta}{2 - \sin^2 \theta}\]
Write the value of tan 10° tan 15° tan 75° tan 80°?
The value of cos 1° cos 2° cos 3° ..... cos 180° is
Evaluate: `(cos55°)/(sin 35°) + (cot 35°)/(tan 55°)`
In ∆ABC, cos C = `12/13` and BC = 24, then AC = ?
The value of (tan1° tan2° tan3° ... tan89°) is ______.