Advertisements
Advertisements
प्रश्न
Find the value of x, if tan x = `(tan60^circ - tan30^circ)/(1 + tan60^circ tan30^circ)`
उत्तर
tan x = `(tan60^circ - tan30^circ)/(1 + tan60^circ tan30^circ)`
tan x = `(sqrt3 - 1/sqrt3)/(1 + sqrt3 xx 1/sqrt3)`
tan x = `((3 - 1)/sqrt3)/(1 + 1)`
= `2/(2sqrt3)`
= `1/sqrt(3)`
= tan 30°
Hence, x = 30°
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
(cosecA − sinA) (secA − cosA) (tanA + cotA) = 1
Evaluate:
`sin80^circ/(cos10^circ) + sin59^circ sec31^circ`
Find the value of x, if cos x = cos 60° cos 30° – sin 60° sin 30°
Prove that:
`(cos(90^circ - theta)costheta)/cottheta = 1 - cos^2theta`
Use tables to find sine of 47° 32'
Use tables to find the acute angle θ, if the value of sin θ is 0.4848
Find A, if 0° ≤ A ≤ 90° and 2 cos2 A – 1 = 0
If \[\tan \theta = \frac{1}{\sqrt{7}}, \text{ then } \frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta} =\]
If A + B = 90°, then \[\frac{\tan A \tan B + \tan A \cot B}{\sin A \sec B} - \frac{\sin^2 B}{\cos^2 A}\]
In ∆ABC, `sqrt(2)` AC = BC, sin A = 1, sin2A + sin2B + sin2C = 2, then ∠A = ? , ∠B = ?, ∠C = ?