Advertisements
Advertisements
प्रश्न
Find the value of x, if tan x = `(tan60^circ - tan30^circ)/(1 + tan60^circ tan30^circ)`
उत्तर
tan x = `(tan60^circ - tan30^circ)/(1 + tan60^circ tan30^circ)`
tan x = `(sqrt3 - 1/sqrt3)/(1 + sqrt3 xx 1/sqrt3)`
tan x = `((3 - 1)/sqrt3)/(1 + 1)`
= `2/(2sqrt3)`
= `1/sqrt(3)`
= tan 30°
Hence, x = 30°
APPEARS IN
संबंधित प्रश्न
Evaluate `(sin 18^@)/(cos 72^@)`
Find the value of x, if cos x = cos 60° cos 30° – sin 60° sin 30°
Find the value of x, if sin 2x = 2 sin 45° cos 45°
Find A, if 0° ≤ A ≤ 90° and 4 sin2 A – 3 = 0
If 4 cos2 A – 3 = 0 and 0° ≤ A ≤ 90°, then prove that cos 3 A = 4 cos3 A – 3 cos A
Write the value of tan 10° tan 15° tan 75° tan 80°?
Express the following in term of angles between 0° and 45° :
sin 59° + tan 63°
If tan θ = cot 37°, then the value of θ is
The value of 3 sin 70° sec 20° + 2 sin 49° sec 51° is
If A, B and C are interior angles of a ΔABC then `cos (("B + C")/2)` is equal to ______.