Advertisements
Advertisements
Question
Find the value of x, if tan x = `(tan60^circ - tan30^circ)/(1 + tan60^circ tan30^circ)`
Solution
tan x = `(tan60^circ - tan30^circ)/(1 + tan60^circ tan30^circ)`
tan x = `(sqrt3 - 1/sqrt3)/(1 + sqrt3 xx 1/sqrt3)`
tan x = `((3 - 1)/sqrt3)/(1 + 1)`
= `2/(2sqrt3)`
= `1/sqrt(3)`
= tan 30°
Hence, x = 30°
APPEARS IN
RELATED QUESTIONS
If tan A = cot B, prove that A + B = 90
Evaluate.
`cot54^@/(tan36^@)+tan20^@/(cot70^@)-2`
Evaluate.
cos225° + cos265° - tan245°
Express the following in terms of angles between 0° and 45°:
cos74° + sec67°
Find the value of x, if sin x = sin 60° cos 30° – cos 60° sin 30°
Find the value of angle A, where 0° ≤ A ≤ 90°.
cos (90° – A) . sec 77° = 1
Use tables to find cosine of 2° 4’
Use tables to find the acute angle θ, if the value of tan θ is 0.7391
∠ACD is an exterior angle of Δ ABC. If ∠B = 40o, ∠A = 70o find ∠ACD.
Sin 2B = 2 sin B is true when B is equal to ______.