Advertisements
Advertisements
Question
If tan A = cot B, prove that A + B = 90
Solution
∵ tan A = cot B
tan A = tan (90° – B)
A = 90° – B
A + B = 90°. Proved
APPEARS IN
RELATED QUESTIONS
If the angle θ = -60° , find the value of sinθ .
What is the value of (cos2 67° – sin2 23°)?
if `3 cos theta = 1`, find the value of `(6 sin^2 theta + tan^2 theta)/(4 cos theta)`
solve.
sec2 18° - cot2 72°
Evaluate.
sin(90° - A) cosA + cos(90° - A) sinA
Evaluate.
`cot54^@/(tan36^@)+tan20^@/(cot70^@)-2`
Express the following in terms of angles between 0° and 45°:
cos74° + sec67°
For triangle ABC, show that : `tan (B + C)/2 = cot A/2`
Evaluate:
`(cot^2 41^circ)/(tan^2 49^circ) - 2 sin^2 75^circ/cos^2 15^circ`
Evaluate:
14 sin 30° + 6 cos 60° – 5 tan 45°
Prove that:
`(cos(90^circ - theta)costheta)/cottheta = 1 - cos^2theta`
If A and B are complementary angles, prove that:
cosec2 A + cosec2 B = cosec2 A cosec2 B
Find the sine ratio of θ in standard position whose terminal arm passes through (3, 4)
Write the maximum and minimum values of cos θ.
Evaluate:
3 cos 80° cosec 10°+ 2 sin 59° sec 31°
Find the value of the following:
`((cos 47^circ)/(sin 43^circ))^2 + ((sin 72^circ)/(cos 18^circ))^2 - 2cos^2 45^circ`
Find the value of the following:
`(cos 70^circ)/(sin 20^circ) + (cos 59^circ)/(sin31^circ) + cos theta/(sin(90^circ - theta))- 8cos^2 60^circ`
If tan θ = cot 37°, then the value of θ is
The value of tan 72° tan 18° is
`tan 47^circ/cot 43^circ` = 1