Advertisements
Advertisements
Question
Evaluate:
3 cos 80° cosec 10°+ 2 sin 59° sec 31°
Solution
3 cos 80° cosec 10° + 2 sin 59° sec 31°
= 3 cos 80° cosec (90° – 80°) + 2 sin 59° sec (90° – 59°)
= 3 cos 80° sec 80° + 2 sin 59° cosec 59°
= 3 × 1 + 2 × 1 ...(∵ cos A × sec A = 1)
= 3 + 2
= 5
APPEARS IN
RELATED QUESTIONS
If the angle θ = -60° , find the value of sinθ .
if `cot theta = 1/sqrt3` find the value of `(1 - cos^2 theta)/(2 - sin^2 theta)`
Evaluate.
sin(90° - A) cosA + cos(90° - A) sinA
Evaluate.
`(2tan53^@)/(cot37^@)-cot80^@/tan10^@`
Evaluate.
cos225° + cos265° - tan245°
Find the value of x, if sin x = sin 60° cos 30° + cos 60° sin 30°
Use tables to find the acute angle θ, if the value of cos θ is 0.9574
Use tables to find the acute angle θ, if the value of tan θ is 0.7391
Prove that:
`1/(1 + sin(90^@ - A)) + 1/(1 - sin(90^@ - A)) = 2sec^2(90^@ - A)`
Find A, if 0° ≤ A ≤ 90° and sin 3A – 1 = 0
Write the value of tan 10° tan 15° tan 75° tan 80°?
If θ is an acute angle such that \[\tan^2 \theta = \frac{8}{7}\] then the value of \[\frac{\left( 1 + \sin \theta \right) \left( 1 - \sin \theta \right)}{\left( 1 + \cos \theta \right) \left( 1 - \cos \theta \right)}\]
If x tan 45° cos 60° = sin 60° cot 60°, then x is equal to
If A + B = 90°, then \[\frac{\tan A \tan B + \tan A \cot B}{\sin A \sec B} - \frac{\sin^2 B}{\cos^2 A}\]
Express the following in term of angles between 0° and 45° :
sin 59° + tan 63°
Evaluate: `3(sin72°)/(cos18°) - (sec32°)/("cosec"58°)`.
Choose the correct alternative:
If ∠A = 30°, then tan 2A = ?
If sin A = `3/5` then show that 4 tan A + 3 sin A = 6 cos A
If x tan 60° cos 60°= sin 60° cot 60°, then x = ______.