Advertisements
Advertisements
प्रश्न
Evaluate:
3 cos 80° cosec 10°+ 2 sin 59° sec 31°
उत्तर
3 cos 80° cosec 10° + 2 sin 59° sec 31°
= 3 cos 80° cosec (90° – 80°) + 2 sin 59° sec (90° – 59°)
= 3 cos 80° sec 80° + 2 sin 59° cosec 59°
= 3 × 1 + 2 × 1 ...(∵ cos A × sec A = 1)
= 3 + 2
= 5
APPEARS IN
संबंधित प्रश्न
Without using trigonometric tables, evaluate the following:
`( i)\frac{\cos37^\text{o}}{\sin53^\text{o}}\text{ }(ii)\frac{\sin41^\text{o}}{\cos 49^\text{o}}(iii)\frac{\sin30^\text{o}17'}{\cos59^\text{o}\43'}`
Express sin 67° + cos 75° in terms of trigonometric ratios of angles between 0° and 45°
Write all the other trigonometric ratios of ∠A in terms of sec A.
Evaluate.
`(cos^2 32^@+cos^2 58^@)/(sin^2 59^@+sin^2 31^@)`
Evaluate:
`2 tan57^circ/(cot33^circ) - cot70^circ/(tan20^circ) - sqrt(2) cos45^circ`
Find the value of x, if tan x = `(tan60^circ - tan30^circ)/(1 + tan60^circ tan30^circ)`
Find the value of x, if sin 3x = 2 sin 30° cos 30°
Evaluate:
`(5sin66^@)/(cos24^@) - (2cot85^@)/(tan5^@)`
Evaluate:
`(3sin72^@)/(cos18^@) - sec32^@/(cosec58^@)`
If A and B are complementary angles, prove that:
cosec2 A + cosec2 B = cosec2 A cosec2 B
Write the value of tan 10° tan 15° tan 75° tan 80°?
If \[\frac{160}{3}\] \[\tan \theta = \frac{a}{b}, \text{ then } \frac{a \sin \theta + b \cos \theta}{a \sin \theta - b \cos \theta}\]
The value of tan 1° tan 2° tan 3° ...... tan 89° is
If 5θ and 4θ are acute angles satisfying sin 5θ = cos 4θ, then 2 sin 3θ −\[\sqrt{3} \tan 3\theta\] is equal to
\[\frac{1 - \tan^2 45°}{1 + \tan^2 45°}\] is equal to
If sin θ =7/25, where θ is an acute angle, find the value of cos θ.
Evaluate: cos2 25° - sin2 65° - tan2 45°
Evaluate: `(cot^2 41°)/(tan^2 49°) - 2 (sin^2 75°)/(cos^2 15°)`
Find the value of the following:
tan 15° tan 30° tan 45° tan 60° tan 75°
`(sin 75^circ)/(cos 15^circ)` = ?