Advertisements
Advertisements
प्रश्न
The value of tan 1° tan 2° tan 3° ...... tan 89° is
विकल्प
1
−1
0
None of these
उत्तर
Here we have to find: `tan 1°tan 2° tan 3°........... tan 89°`
`tan1° tan 2° tan 3°............... tan 89°`
`=tan (90°-89°) tan (90°-88°)tan (90°-87°).............. tan 87° tan88° tan 89°`
`= cot 89° cot 88° cot 87°............tan 87° tan 88° tan 89°`
`= (cot 89° tan 89°)(cot 88° tan 88°) (cot 87° tan 87°).....(cot 44° tan 44°) tan 45°`
= `1xx1xx1............1xx1` `["since cot θ tan θ=1"]`
=`1`
APPEARS IN
संबंधित प्रश्न
Express each of the following in terms of trigonometric ratios of angles between 0º and 45º;
(i) cosec 69º + cot 69º
(ii) sin 81º + tan 81º
(iii) sin 72º + cot 72º
If A, B, C are the interior angles of a triangle ABC, prove that `\tan \frac{B+C}{2}=\cot \frac{A}{2}`
If tan A = cot B, prove that A + B = 90
Evaluate `(tan 26^@)/(cot 64^@)`
Without using trigonometric tables evaluate:
`(sin 65^@)/(cos 25^@) + (cos 32^@)/(sin 58^@) - sin 28^2. sec 62^@ + cosec^2 30^@`
Evaluate.
sin(90° - A) cosA + cos(90° - A) sinA
Evaluate.
cos225° + cos265° - tan245°
Express the following in terms of angles between 0° and 45°:
cosec68° + cot72°
Evaluate:
`sin80^circ/(cos10^circ) + sin59^circ sec31^circ`
Evaluate:
`(cot^2 41^circ)/(tan^2 49^circ) - 2 sin^2 75^circ/cos^2 15^circ`
Find the value of angle A, where 0° ≤ A ≤ 90°.
cos (90° – A) . sec 77° = 1
Evaluate:
`(sin35^circ cos55^circ + cos35^circ sin55^circ)/(cosec^2 10^circ - tan^2 80^circ)`
Use tables to find cosine of 65° 41’
Use tables to find the acute angle θ, if the value of sin θ is 0.4848
If 0° < A < 90°; find A, if `sinA/(secA - 1) + sinA/(secA + 1) = 2`
Find the sine ratio of θ in standard position whose terminal arm passes through (3, 4)
The value of cos2 17° − sin2 73° is
The value of tan 10° tan 15° tan 75° tan 80° is
Evaluate: `(sin 80°)/(cos 10°)`+ sin 59° sec 31°
If x tan 60° cos 60°= sin 60° cot 60°, then x = ______.