Advertisements
Advertisements
प्रश्न
If A, B, C are the interior angles of a triangle ABC, prove that `\tan \frac{B+C}{2}=\cot \frac{A}{2}`
उत्तर
In ∆ABC, we have
A + B + C = 180º
⇒ B + C = 180º – A
`\Rightarrow \frac{B+C}{2}=\text{ }90^\text{o}-\frac{A}{2}`
Taking tan on both sides, we get
`\Rightarrow \tan ( \frac{B+C}{2})=\tan( 90^\text{o}-\frac{A}{2})`
`\Rightarrow \tan ( \frac{B+C}{2} )=\cot \frac{A}{2}`
APPEARS IN
संबंधित प्रश्न
if `cosec A = sqrt2` find the value of `(2 sin^2 A + 3 cot^2 A)/(4(tan^2 A - cos^2 A))`
Express the following in terms of angles between 0° and 45°:
cosec68° + cot72°
Evaluate:
`sin80^circ/(cos10^circ) + sin59^circ sec31^circ`
Evaluate:
14 sin 30° + 6 cos 60° – 5 tan 45°
Prove that:
`(sinthetasin(90^circ - theta))/cot(90^circ - theta) = 1 - sin^2theta`
Use tables to find sine of 21°
If A and B are complementary angles, then
A, B and C are interior angles of a triangle ABC. Show that
If ∠A = 90°, then find the value of tan`(("B+C")/2)`
If x and y are complementary angles, then ______.
If sec A + tan A = x, then sec A = ______.