Advertisements
Advertisements
प्रश्न
Prove that:
`(sinthetasin(90^circ - theta))/cot(90^circ - theta) = 1 - sin^2theta`
उत्तर
L.H.S. = `(sinthetasin(90^@-theta))/cot(90^@-theta)`
= `(sinthetacostheta)/tantheta`
= `(sinthetacostheta)/(sintheta/costheta)`
= cos2θ
= 1 – sin2θ = R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
(cosecθ + sinθ) (cosecθ − sinθ) = cot2 θ + cos2θ
Use tables to find sine of 34° 42'
Evaluate:
`2(tan35^@/cot55^@)^2 + (cot55^@/tan35^@)^2 - 3(sec40^@/(cosec50^@))`
Evaluate:
`sec26^@ sin64^@ + (cosec33^@)/sec57^@`
If \[\frac{160}{3}\] \[\tan \theta = \frac{a}{b}, \text{ then } \frac{a \sin \theta + b \cos \theta}{a \sin \theta - b \cos \theta}\]
\[\frac{1 - \tan^2 45°}{1 + \tan^2 45°}\] is equal to
Find the value of the following:
sin 21° 21′
If tan θ = 1, then sin θ . cos θ = ?
If cot( 90 – A ) = 1, then ∠A = ?
Sin 2B = 2 sin B is true when B is equal to ______.