Advertisements
Advertisements
प्रश्न
Prove that:
`(sinthetasin(90^circ - theta))/cot(90^circ - theta) = 1 - sin^2theta`
उत्तर
L.H.S. = `(sinthetasin(90^@-theta))/cot(90^@-theta)`
= `(sinthetacostheta)/tantheta`
= `(sinthetacostheta)/(sintheta/costheta)`
= cos2θ
= 1 – sin2θ = R.H.S.
APPEARS IN
संबंधित प्रश्न
Evaluate.
`(2tan53^@)/(cot37^@)-cot80^@/tan10^@`
Evaluate:
`(cot^2 41^circ)/(tan^2 49^circ) - 2 sin^2 75^circ/cos^2 15^circ`
Find the value of x, if sin 2x = 2 sin 45° cos 45°
Find the value of angle A, where 0° ≤ A ≤ 90°.
sin (90° – 3A) . cosec 42° = 1
Use tables to find the acute angle θ, if the value of cos θ is 0.9574
Prove that :
tan5° tan25° tan30° tan65° tan85° = \[\frac{1}{\sqrt{3}}\]
Prove that:
cos15° cos35° cosec55° cos60° cosec75° = \[\frac{1}{2}\]
Evaluate: `(cot^2 41°)/(tan^2 49°) - 2 (sin^2 75°)/(cos^2 15°)`
In the case, given below, find the value of angle A, where 0° ≤ A ≤ 90°.
sin (90° - 3A).cosec 42° = 1.
If tan θ = cot 37°, then the value of θ is