Advertisements
Advertisements
प्रश्न
In the case, given below, find the value of angle A, where 0° ≤ A ≤ 90°.
sin (90° - 3A).cosec 42° = 1.
उत्तर
Sin (90° - 3A). cosec 42° = 1
⇒ sin (90° - 3A) = `(1)/("cosec" 42°)`
⇒ cos 3A = `(1)/("cosec" (90° - 48°)`
⇒ cos 3A = `(1)/(sec 48°)`
⇒ cos 3A = cos 48°
⇒ 3A = 48°
⇒ A = 16°.
APPEARS IN
संबंधित प्रश्न
Write all the other trigonometric ratios of ∠A in terms of sec A.
Without using trigonometric tables evaluate:
`(sin 65^@)/(cos 25^@) + (cos 32^@)/(sin 58^@) - sin 28^2. sec 62^@ + cosec^2 30^@`
if `cos theta = 4/5` find all other trigonometric ratios of angles θ
Solve.
`cos22/sin68`
Show that : sin 42° sec 48° + cos 42° cosec 48° = 2
Find the value of x, if tan x = `(tan60^circ - tan30^circ)/(1 + tan60^circ tan30^circ)`
Use tables to find the acute angle θ, if the value of tan θ is 0.4741
Find A, if 0° ≤ A ≤ 90° and sin 3A – 1 = 0
If 16 cot x = 12, then \[\frac{\sin x - \cos x}{\sin x + \cos x}\]
The value of cos2 17° − sin2 73° is