Advertisements
Advertisements
प्रश्न
Show that : sin 42° sec 48° + cos 42° cosec 48° = 2
उत्तर
sin 42° sec 48° + cos 42° cosec 48° = 2
Consider sin 42° sec 48° + cos 42° cosec 48°
`=>` sin 42° sec (90° – 42°) + cos 42° cosec (90° – 42°)
`=>` sin 42° cosec 42° + cos 42° sec 42°
`=> sin 42^circ xx 1/(sin42^circ) + cos42^circ xx 1/(cos42^circ)`
`=>` 1 + 1 = 2
APPEARS IN
संबंधित प्रश्न
Without using trigonometric tables evaluate the following:
`(i) sin^2 25º + sin^2 65º `
Without using trigonometric tables, evaluate the following:
`(\sin ^{2}20^\text{o}+\sin^{2}70^\text{o})/(\cos ^{2}20^\text{o}+\cos ^{2}70^\text{o}}+\frac{\sin (90^\text{o}-\theta )\sin \theta }{\tan \theta }+\frac{\cos (90^\text{o}-\theta )\cos \theta }{\cot \theta }`
Use trigonometrical tables to find tangent of 37°
Use tables to find the acute angle θ, if the value of tan θ is 0.7391
Evaluate:
`2(tan35^@/cot55^@)^2 + (cot55^@/tan35^@)^2 - 3(sec40^@/(cosec50^@))`
Find the sine ratio of θ in standard position whose terminal arm passes through (3, 4)
Express the following in term of angles between 0° and 45° :
sin 59° + tan 63°
Express the following in term of angles between 0° and 45° :
cosec 68° + cot 72°
The value of tan 1° tan 2° tan 3°…. tan 89° is
The value of (tan1° tan2° tan3° ... tan89°) is ______.