मराठी

The value of (tan1° tan2° tan3° ... tan89°) is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The value of (tan1° tan2° tan3° ... tan89°) is ______.

पर्याय

  • 0

  • 1

  • 2

  • `1/2`

MCQ
रिकाम्या जागा भरा

उत्तर

The value of (tan1° tan2° tan3° ... tan89°) is 1.

Explanation:

tan 1°.tan 2°.tan 3° ...... tan 89°

= tan 1°.tan 2°.tan 3°...tan 43°.tan 44°.tan 45°.tan 46°.tan 47°...tan 87°.tan 88°.tan 89°

Since, tan 45° = 1,

= tan 1°.tan 2°.tan 3°...tan 43°.tan 44°.1.tan 46°.tan 47°...tan 87°.tan 88°.tan 89°

= tan 1°.tan 2°.tan 3°…tan 43°.tan 44°.1.tan(90° – 44°).tan(90° – 43°) ...tan(90° – 3°).tan(90° – 2°).tan(90° – 1°)

Since, tan(90° – θ) = cot θ,

= tan 1°.tan 2°.tan 3°...tan 43°.tan 44°.1.cot 44°.cot 43°...cot 3°.cot 2°.cot 1°

Since, tan θ = `(1/cot θ)`

= `tan1^circ * tan2^circ * tan3°...tan43^circ * tan44^circ * 1 *  (1/tan 44^circ)`. `(1/tan 43^circ) ... (1/tan 3^circ) * (1/tan 2^circ) * (1/tan 1^circ)`

= `(tan 1^circ xx 1/tan1^circ) * (tan 2^circ xx 1/tan 2^circ) ... (tan 44^circ xx 1/tan 44^circ)`

= 1

Hence, tan 1°.tan 2°.tan 3° ...... tan 89° = 1

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Introduction To Trigonometry and Its Applications - Exercise 8.1 [पृष्ठ ९०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 10
पाठ 8 Introduction To Trigonometry and Its Applications
Exercise 8.1 | Q 6 | पृष्ठ ९०

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If sin θ =3/5, where θ is an acute angle, find the value of cos θ.


Without using trigonometric tables evaluate the following:

`(i) sin^2 25º + sin^2 65º `


`(\text{i})\text{ }\frac{\cot 54^\text{o}}{\tan36^\text{o}}+\frac{\tan 20^\text{o}}{\cot 70^\text{o}}-2`


Express each of the following in terms of trigonometric ratios of angles between 0º and 45º;

(i) cosec 69º + cot 69º

(ii) sin 81º + tan 81º

(iii) sin 72º + cot 72º


If tan A = cot B, prove that A + B = 90


Evaluate:

3cos80° cosec10° + 2 sin59° sec31°


Evaluate:

14 sin 30° + 6 cos 60° – 5 tan 45°


Find the value of x, if tan x = `(tan60^circ - tan30^circ)/(1 + tan60^circ tan30^circ)`


Prove that:

`(cos(90^circ - theta)costheta)/cottheta = 1 - cos^2theta`


Evaluate:

`(sin35^circ cos55^circ + cos35^circ sin55^circ)/(cosec^2 10^circ - tan^2 80^circ)`


Use tables to find sine of 62° 57'


Use tables to find the acute angle θ, if the value of tan θ is 0.7391


Find A, if 0° ≤ A ≤ 90° and 2 cos2 A – 1 = 0


If 3 cos θ = 5 sin θ, then the value of

\[\frac{5 \sin \theta - 2 \sec^3 \theta + 2 \cos \theta}{5 \sin \theta + 2 \sec^3 \theta - 2 \cos \theta}\] is?

The value of \[\frac{\cos^3 20°- \cos^3 70°}{\sin^3 70° - \sin^3 20°}\] 


If ∆ABC is right angled at C, then the value of cos (A + B) is ______.


In the case, given below, find the value of angle A, where 0° ≤ A ≤ 90°.

cos(90° - A) · sec 77° = 1


Find the value of the following:

`(cos 70^circ)/(sin 20^circ) + (cos 59^circ)/(sin31^circ) + cos theta/(sin(90^circ - theta))- 8cos^2 60^circ`


Prove that `"tan A"/"cot A" = (sec^2"A")/("cosec"^2"A")`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×