Advertisements
Advertisements
प्रश्न
The value of (tan1° tan2° tan3° ... tan89°) is ______.
विकल्प
0
1
2
`1/2`
उत्तर
The value of (tan1° tan2° tan3° ... tan89°) is 1.
Explanation:
tan 1°.tan 2°.tan 3° ...... tan 89°
= tan 1°.tan 2°.tan 3°...tan 43°.tan 44°.tan 45°.tan 46°.tan 47°...tan 87°.tan 88°.tan 89°
Since, tan 45° = 1,
= tan 1°.tan 2°.tan 3°...tan 43°.tan 44°.1.tan 46°.tan 47°...tan 87°.tan 88°.tan 89°
= tan 1°.tan 2°.tan 3°…tan 43°.tan 44°.1.tan(90° – 44°).tan(90° – 43°) ...tan(90° – 3°).tan(90° – 2°).tan(90° – 1°)
Since, tan(90° – θ) = cot θ,
= tan 1°.tan 2°.tan 3°...tan 43°.tan 44°.1.cot 44°.cot 43°...cot 3°.cot 2°.cot 1°
Since, tan θ = `(1/cot θ)`
= `tan1^circ * tan2^circ * tan3°...tan43^circ * tan44^circ * 1 * (1/tan 44^circ)`. `(1/tan 43^circ) ... (1/tan 3^circ) * (1/tan 2^circ) * (1/tan 1^circ)`
= `(tan 1^circ xx 1/tan1^circ) * (tan 2^circ xx 1/tan 2^circ) ... (tan 44^circ xx 1/tan 44^circ)`
= 1
Hence, tan 1°.tan 2°.tan 3° ...... tan 89° = 1
APPEARS IN
संबंधित प्रश्न
If sin θ =3/5, where θ is an acute angle, find the value of cos θ.
Evaluate cosec 31° − sec 59°
If sec 4A = cosec (A− 20°), where 4A is an acute angle, find the value of A.
if `cot theta = sqrt3` find the value of `(cosec^2 theta + cot^2 theta)/(cosec^2 theta - sec^2 theta)`
if `sqrt3 tan theta = 3 sin theta` find the value of `sin^2 theta - cos^2 theta`
Solve.
sin15° cos75° + cos15° sin75°
Evaluate.
sin(90° - A) cosA + cos(90° - A) sinA
A triangle ABC is right angles at B; find the value of`(secA.cosecC - tanA.cotC)/sinB`
Find the value of x, if sin x = sin 60° cos 30° + cos 60° sin 30°
Find the value of x, if sin 2x = 2 sin 45° cos 45°
Use trigonometrical tables to find tangent of 37°
Use tables to find the acute angle θ, if the value of tan θ is 0.2419
Evaluate:
`sec26^@ sin64^@ + (cosec33^@)/sec57^@`
Evaluate:
sin 27° sin 63° – cos 63° cos 27°
Given
\[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\] what is the value of \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\]
If tan2 45° − cos2 30° = x sin 45° cos 45°, then x =
The value of \[\frac{\cos^3 20°- \cos^3 70°}{\sin^3 70° - \sin^3 20°}\]
If sin θ =7/25, where θ is an acute angle, find the value of cos θ.
A, B and C are interior angles of a triangle ABC. Show that
sin `(("B"+"C")/2) = cos "A"/2`
If sin A = `3/5` then show that 4 tan A + 3 sin A = 6 cos A