Advertisements
Advertisements
प्रश्न
A triangle ABC is right angles at B; find the value of`(secA.cosecC - tanA.cotC)/sinB`
उत्तर
Since, ABC is a right angled triangle, right angled at B.
So, A + C = 90°
`(secA.cosecC - tanA.cotC)/sinB`
= `(sec(90^circ - C).cosecC - tan(90^circ - C).cotC)/sin90^circ`
= `(cosecC.cosecC - cotC.cotC)/1`
= 1 ...[∵ cosec2θ – cot2θ = 1]
APPEARS IN
संबंधित प्रश्न
Evaluate.
sin(90° - A) cosA + cos(90° - A) sinA
Evaluate:
`(3sin72^@)/(cos18^@) - sec32^@/(cosec58^@)`
If 8 tan x = 15, then sin x − cos x is equal to
If 3 cos θ = 5 sin θ, then the value of
If \[\frac{x {cosec}^2 30°\sec^2 45°}{8 \cos^2 45° \sin^2 60°} = \tan^2 60° - \tan^2 30°\]
If θ and 2θ − 45° are acute angles such that sin θ = cos (2θ − 45°), then tan θ is equal to
Prove that:
cos15° cos35° cosec55° cos60° cosec75° = \[\frac{1}{2}\]
In the case, given below, find the value of angle A, where 0° ≤ A ≤ 90°.
sin (90° - 3A).cosec 42° = 1.
The value of cosec(70° + θ) – sec(20° − θ) + tan(65° + θ) – cot(25° − θ) is
The value of tan 1° tan 2° tan 3°…. tan 89° is