हिंदी

If 8 Tan X = 15, Then Sin X − Cos X is Equal to - Mathematics

Advertisements
Advertisements

प्रश्न

If 8 tan x = 15, then sin x − cos x is equal to 

विकल्प

  • \[\frac{8}{17}\]

  • \[\frac{17}{7}\]

  • \[\frac{1}{17}\]

  • \[\frac{7}{17}\]

MCQ

उत्तर

Given that:

`8 tan x=15`

`tan x=15/8` 

⇒` "Perpendicular"=15`

⇒` "Base"=8` 

⇒` "Hypotenuse"=sqrt225+64`

⇒ `"Hypotenuse"=17`

We know that `sin x = "Perpendicular"/"Hypotenuse" and cos x = "Base"/"Hypotenuse"` 

We find: `sin x-cos x` 

⇒` sin x-cos x= 15/17-8/17` 

⇒` sin x-cos x = 7/17` 

  

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Trigonometric Ratios - Exercise 10.5 [पृष्ठ ५६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 10 Trigonometric Ratios
Exercise 10.5 | Q 5 | पृष्ठ ५६

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Express the following in terms of angle between 0° and 45°:

sin 59° + tan 63°


Express the following in terms of angles between 0° and 45°:

cos74° + sec67°


Use tables to find the acute angle θ, if the value of sin θ is 0.4848


Use tables to find the acute angle θ, if the value of cos θ is 0.9848


Use tables to find the acute angle θ, if the value of tan θ is 0.2419


Evaluate:

3 cos 80° cosec 10° + 2 cos 59° cosec 31°


If A and B are complementary angles, prove that:

cot B + cos B = sec A cos B (1 + sin B)


If A and B are complementary angles, prove that:

`(sinA + sinB)/(sinA - sinB) + (cosB - cosA)/(cosB + cosA) = 2/(2sin^2A - 1)`


If 4 cos2 A – 3 = 0 and 0° ≤ A ≤ 90°, then prove that sin 3 A = 3 sin A – 4 sin3 A


Find A, if 0° ≤ A ≤ 90° and 4 sin2 A – 3 = 0


If tanθ = 2, find the values of other trigonometric ratios.


If \[\tan \theta = \frac{1}{\sqrt{7}}, \text{ then } \frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta} =\] 


If \[\tan \theta = \frac{3}{4}\]  then cos2 θ − sin2 θ = 


If x sin (90° − θ) cot (90° − θ) = cos (90° − θ), then x =


If θ is an acute angle such that sec2 θ = 3, then the value of \[\frac{\tan^2 \theta - {cosec}^2 \theta}{\tan^2 \theta + {cosec}^2 \theta}\]


A, B and C are interior angles of a triangle ABC. Show that

If ∠A = 90°, then find the value of tan`(("B+C")/2)`


Find the value of the following:

`((cos 47^circ)/(sin 43^circ))^2 + ((sin 72^circ)/(cos 18^circ))^2 - 2cos^2 45^circ`


If tan θ = cot 37°, then the value of θ is


The value of cosec(70° + θ) – sec(20° − θ) + tan(65° + θ) – cot(25° − θ) is


In ∆ABC, `sqrt(2)` AC = BC, sin A = 1, sin2A + sin2B + sin2C = 2, then ∠A = ? , ∠B = ?, ∠C = ?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×