Advertisements
Advertisements
प्रश्न
If 16 cot x = 12, then \[\frac{\sin x - \cos x}{\sin x + \cos x}\]
विकल्प
\[\frac{1}{7}\]
\[\frac{3}{7}\]
\[\frac{2}{7}\]
0
उत्तर
We are given`16 cot x=12` .We are asked to find the following
`(sin x-cos x)/(sin x+cos x)`
We know that: `cot x= "Base"/"Perpendicular" `
⇒ "Base"=3
⇒ "Perpendicular"=4
⇒ `"Hypotenuse"= sqrt(("Perpendicular")^2+("Base")^2)`
⇒ `"Hypotenuse"=sqrt(16+9)`
⇒`"Hypotenuse"=5`
Now we have
`16 cot x=12`
`cot x=12/16`
`cot x=3/4`,
We know sin x=`"Perpendicular"/"Hypotenuse" and Cos x= "Base"/"Hypotenuse"`
Now we find
`(Sin x- cos x)/(sin z+cos x)`
= `(4/5-3/5)/(4/5+3/5)`
=`(1/5)/(7/5)`
=`1/7`
APPEARS IN
संबंधित प्रश्न
Express each of the following in terms of trigonometric ratios of angles between 0º and 45º;
(i) cosec 69º + cot 69º
(ii) sin 81º + tan 81º
(iii) sin 72º + cot 72º
If sec 4A = cosec (A− 20°), where 4A is an acute angle, find the value of A.
Evaluate.
`(sin77^@/cos13^@)^2+(cos77^@/sin13^@)-2cos^2 45^@`
Express the following in terms of angles between 0° and 45°:
cosec68° + cot72°
Evaluate:
`cos70^circ/(sin20^circ) + cos59^circ/(sin31^circ) - 8 sin^2 30^circ`
Use tables to find the acute angle θ, if the value of cos θ is 0.9574
Use tables to find the acute angle θ, if the value of cos θ is 0.6885
Use tables to find the acute angle θ, if the value of tan θ is 0.4741
Evaluate:
`(cos75^@)/(sin15^@) + (sin12^@)/(cos78^@) - (cos18^@)/(sin72^@)`
Find A, if 0° ≤ A ≤ 90° and 4 sin2 A – 3 = 0
If \[\cos \theta = \frac{2}{3}\] find the value of \[\frac{\sec \theta - 1}{\sec \theta + 1}\]
If A + B = 90° and \[\cos B = \frac{3}{5}\] what is the value of sin A?
If θ is an acute angle such that \[\tan^2 \theta = \frac{8}{7}\] then the value of \[\frac{\left( 1 + \sin \theta \right) \left( 1 - \sin \theta \right)}{\left( 1 + \cos \theta \right) \left( 1 - \cos \theta \right)}\]
If tan2 45° − cos2 30° = x sin 45° cos 45°, then x =
The value of \[\frac{\cos^3 20°- \cos^3 70°}{\sin^3 70° - \sin^3 20°}\]
The value of \[\frac{\tan 55°}{\cot 35°}\] + cot 1° cot 2° cot 3° .... cot 90°, is
Evaluate: `2(tan57°)/(cot33°) - (cot70°)/(tan20°) - sqrt(2) cos 45°`
Find the value of the following:
`cot theta/(tan(90^circ - theta)) + (cos(90^circ - theta) tantheta sec(90^circ - theta))/(sin(90^circ - theta)cot(90^circ - theta)"cosec"(90^circ - theta))`
The value of (tan1° tan2° tan3° ... tan89°) is ______.