हिंदी

If 16 Cot X = 12, Then Sin X − Cos X Sin X + Cos X - Mathematics

Advertisements
Advertisements

प्रश्न

If 16 cot x = 12, then \[\frac{\sin x - \cos x}{\sin x + \cos x}\]

विकल्प

  • \[\frac{1}{7}\]

  • \[\frac{3}{7}\]

  • \[\frac{2}{7}\]

  • 0

MCQ

उत्तर

We are given`16 cot x=12` .We are asked to find the following

`(sin x-cos x)/(sin x+cos x)`

We know that: `cot x= "Base"/"Perpendicular" `

⇒ "Base"=3

⇒ "Perpendicular"=4

⇒ `"Hypotenuse"= sqrt(("Perpendicular")^2+("Base")^2)`

⇒ `"Hypotenuse"=sqrt(16+9)`

⇒`"Hypotenuse"=5`

Now we have

`16 cot x=12`

`cot x=12/16`

`cot x=3/4`,

We know sin x=`"Perpendicular"/"Hypotenuse" and Cos x= "Base"/"Hypotenuse"`

Now we find

`(Sin x- cos x)/(sin z+cos x)`

= `(4/5-3/5)/(4/5+3/5)`

=`(1/5)/(7/5)`

=`1/7`

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Trigonometric Ratios - Exercise 10.5 [पृष्ठ ५६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 10 Trigonometric Ratios
Exercise 10.5 | Q 4 | पृष्ठ ५६

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Express each of the following in terms of trigonometric ratios of angles between 0º and 45º;

(i) cosec 69º + cot 69º

(ii) sin 81º + tan 81º

(iii) sin 72º + cot 72º


If sec 4A = cosec (A− 20°), where 4A is an acute angle, find the value of A.


Evaluate.
`(sin77^@/cos13^@)^2+(cos77^@/sin13^@)-2cos^2 45^@`


Express the following in terms of angles between 0° and 45°:

cosec68° + cot72°


Evaluate:

`cos70^circ/(sin20^circ) + cos59^circ/(sin31^circ) - 8 sin^2 30^circ`


Use tables to find the acute angle θ, if the value of cos θ is 0.9574


Use tables to find the acute angle θ, if the value of cos θ is 0.6885


Use tables to find the acute angle θ, if the value of tan θ is 0.4741


Evaluate:

`(cos75^@)/(sin15^@) + (sin12^@)/(cos78^@) - (cos18^@)/(sin72^@)`


Find A, if 0° ≤ A ≤ 90° and 4 sin2 A – 3 = 0


If \[\cos \theta = \frac{2}{3}\]  find the value of \[\frac{\sec \theta - 1}{\sec \theta + 1}\]


If A + B = 90° and \[\cos B = \frac{3}{5}\]  what is the value of sin A? 


If θ is an acute angle such that \[\tan^2 \theta = \frac{8}{7}\] then the value of \[\frac{\left( 1 + \sin \theta \right) \left( 1 - \sin \theta \right)}{\left( 1 + \cos \theta \right) \left( 1 - \cos \theta \right)}\]


If tan2 45° − cos2 30° = x sin 45° cos 45°, then x


The value of \[\frac{\cos^3 20°- \cos^3 70°}{\sin^3 70° - \sin^3 20°}\] 


The value of \[\frac{\tan 55°}{\cot 35°}\] + cot 1° cot 2° cot 3° .... cot 90°, is


Evaluate: `2(tan57°)/(cot33°) - (cot70°)/(tan20°) - sqrt(2) cos 45°`


Find the value of the following:

`cot theta/(tan(90^circ - theta)) + (cos(90^circ - theta) tantheta sec(90^circ - theta))/(sin(90^circ - theta)cot(90^circ - theta)"cosec"(90^circ - theta))`


The value of (tan1° tan2° tan3° ... tan89°) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×