Advertisements
Advertisements
प्रश्न
Use tables to find the acute angle θ, if the value of tan θ is 0.4741
उत्तर
From the tables, it is clear that tan 25° 18’ = 0.4727
tan θ − tan 25° 18’ = 0.4741 − 0.4727 = 0.0014
From the tables, diff of 4’ = 0.0014
Hence, θ = 25° 18’ + 4’ = 25° 22’
APPEARS IN
संबंधित प्रश्न
Evaluate.
sin(90° - A) cosA + cos(90° - A) sinA
Find the value of x, if sin x = sin 60° cos 30° – cos 60° sin 30°
Find the value of angle A, where 0° ≤ A ≤ 90°.
sin (90° – 3A) . cosec 42° = 1
Use tables to find sine of 47° 32'
Evaluate:
`(5sin66^@)/(cos24^@) - (2cot85^@)/(tan5^@)`
Evaluate:
cos 40° cosec 50° + sin 50° sec 40°
If A and B are complementary angles, prove that:
cot A cot B – sin A cos B – cos A sin B = 0
If \[\tan \theta = \frac{1}{\sqrt{7}}, \text{ then } \frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta} =\]
Find the value of the following:
tan 15° tan 30° tan 45° tan 60° tan 75°
If x tan 45° sin 30° = cos 30° tan 30°, then x is equal to ______.