Advertisements
Advertisements
प्रश्न
Find the value of angle A, where 0° ≤ A ≤ 90°.
sin (90° – 3A) . cosec 42° = 1
उत्तर
sin (90° – 3A) . cosec 42° = 1
`cos3A. 1/(sin42^circ) = 1`
cos 3A = sin 42°
= sin (90° – 48°)
= cos 48°
3A = 48°
A = 16°
APPEARS IN
संबंधित प्रश्न
If tan A = cot B, prove that A + B = 90
Prove the following trigonometric identities.
(secθ + cosθ) (secθ − cosθ) = tan2θ + sin2θ
Use trigonometrical tables to find tangent of 17° 27'
Use tables to find the acute angle θ, if the value of sin θ is 0.3827
Prove that:
tan (55° - A) - cot (35° + A)
If 5θ and 4θ are acute angles satisfying sin 5θ = cos 4θ, then 2 sin 3θ −\[\sqrt{3} \tan 3\theta\] is equal to
Express the following in term of angles between 0° and 45° :
sin 59° + tan 63°
Evaluate: `3(sin72°)/(cos18°) - (sec32°)/("cosec"58°)`.
Evaluate:
3 cos 80° cosec 10°+ 2 sin 59° sec 31°
The value of the expression (cos2 23° – sin2 67°) is positive.