हिंदी

If 5θ and 4θ Are Acute Angles Satisfying Sin 5θ = Cos 4θ, Then 2 Sin 3θ − √ 3 Tan 3 θ is Equal to - Mathematics

Advertisements
Advertisements

प्रश्न

If 5θ and 4θ are acute angles satisfying sin 5θ = cos 4θ, then 2 sin 3θ −\[\sqrt{3} \tan 3\theta\]  is equal to 

विकल्प

  •  1

  •  0

  •  −1

  • \[1 + \sqrt{3}\]

MCQ

उत्तर

We are given that 5θ and 4θ are acute angles satisfying the following condition sin 5θ = cos 4θ. We are asked to find 2 `sin 3θ -sqrt3 tan 3θ `

⇒ `sin 5θ= cos 4θ`

⇒` cos (90°-5θ)= cos 4θ` 

⇒` 90°-5θ=4θ` 

⇒ `90=90°` 

Where `5θ` and `4θ` are acute angles 

⇒ `θ=10°`

Now we have to find: 

 `2 sin 3θ-sqrt3 tan 3θ` 

=` 2 sin 30°-sqrt3 tan 30°` 

= `2xx1/2-sqrt3xx1/sqrt3`

=`1-1`

=` 0`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Trigonometric Ratios - Exercise 10.5 [पृष्ठ ५८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 10 Trigonometric Ratios
Exercise 10.5 | Q 25 | पृष्ठ ५८

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Express each of the following in terms of trigonometric ratios of angles between 0º and 45º;

(i) cosec 69º + cot 69º

(ii) sin 81º + tan 81º

(iii) sin 72º + cot 72º


If A, B, C are the interior angles of a triangle ABC, prove that `\tan \frac{B+C}{2}=\cot \frac{A}{2}`


Without using trigonometric tables evaluate:

`(sin 65^@)/(cos 25^@) + (cos 32^@)/(sin 58^@) - sin 28^2. sec 62^@ + cosec^2 30^@`


Prove the following trigonometric identities.

(secθ + cosθ) (secθ − cosθ) = tan2θ + sin2θ


solve.
cos240° + cos250°


Evaluate.
`(sin77^@/cos13^@)^2+(cos77^@/sin13^@)-2cos^2 45^@`


A triangle ABC is right angles at B; find the value of`(secA.cosecC - tanA.cotC)/sinB`


Use tables to find sine of 62° 57'


Use tables to find the acute angle θ, if the value of cos θ is 0.9848


Evaluate:

sin 27° sin 63° – cos 63° cos 27°


Prove that:

tan (55° - A) - cot (35° + A)


If A and B are complementary angles, prove that:

cot B + cos B = sec A cos B (1 + sin B)


If A and B are complementary angles, prove that:

cosec2 A + cosec2 B = cosec2 A cosec2 B


Find A, if 0° ≤ A ≤ 90° and 4 sin2 A – 3 = 0


If tanθ = 2, find the values of other trigonometric ratios.


If A + B = 90° and \[\tan A = \frac{3}{4}\]\[\tan A = \frac{3}{4}\] what is cot B


If \[\frac{160}{3}\] \[\tan \theta = \frac{a}{b}, \text{ then } \frac{a \sin \theta + b \cos \theta}{a \sin \theta - b \cos \theta}\]

 

If θ is an acute angle such that \[\tan^2 \theta = \frac{8}{7}\] then the value of \[\frac{\left( 1 + \sin \theta \right) \left( 1 - \sin \theta \right)}{\left( 1 + \cos \theta \right) \left( 1 - \cos \theta \right)}\]


Prove that:

cos15° cos35° cosec55° cos60° cosec75° = \[\frac{1}{2}\]


Find the value of the following:

`cot theta/(tan(90^circ - theta)) + (cos(90^circ - theta) tantheta sec(90^circ - theta))/(sin(90^circ - theta)cot(90^circ - theta)"cosec"(90^circ - theta))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×