Advertisements
Advertisements
प्रश्न
If 5θ and 4θ are acute angles satisfying sin 5θ = cos 4θ, then 2 sin 3θ −\[\sqrt{3} \tan 3\theta\] is equal to
विकल्प
1
0
−1
\[1 + \sqrt{3}\]
उत्तर
We are given that 5θ and 4θ are acute angles satisfying the following condition sin 5θ = cos 4θ. We are asked to find 2 `sin 3θ -sqrt3 tan 3θ `
⇒ `sin 5θ= cos 4θ`
⇒` cos (90°-5θ)= cos 4θ`
⇒` 90°-5θ=4θ`
⇒ `90=90°`
Where `5θ` and `4θ` are acute angles
⇒ `θ=10°`
Now we have to find:
`2 sin 3θ-sqrt3 tan 3θ`
=` 2 sin 30°-sqrt3 tan 30°`
= `2xx1/2-sqrt3xx1/sqrt3`
=`1-1`
=` 0`
APPEARS IN
संबंधित प्रश्न
Express each of the following in terms of trigonometric ratios of angles between 0º and 45º;
(i) cosec 69º + cot 69º
(ii) sin 81º + tan 81º
(iii) sin 72º + cot 72º
If A, B, C are the interior angles of a triangle ABC, prove that `\tan \frac{B+C}{2}=\cot \frac{A}{2}`
Without using trigonometric tables evaluate:
`(sin 65^@)/(cos 25^@) + (cos 32^@)/(sin 58^@) - sin 28^2. sec 62^@ + cosec^2 30^@`
Prove the following trigonometric identities.
(secθ + cosθ) (secθ − cosθ) = tan2θ + sin2θ
solve.
cos240° + cos250°
Evaluate.
`(sin77^@/cos13^@)^2+(cos77^@/sin13^@)-2cos^2 45^@`
A triangle ABC is right angles at B; find the value of`(secA.cosecC - tanA.cotC)/sinB`
Use tables to find sine of 62° 57'
Use tables to find the acute angle θ, if the value of cos θ is 0.9848
Evaluate:
sin 27° sin 63° – cos 63° cos 27°
Prove that:
tan (55° - A) - cot (35° + A)
If A and B are complementary angles, prove that:
cot B + cos B = sec A cos B (1 + sin B)
If A and B are complementary angles, prove that:
cosec2 A + cosec2 B = cosec2 A cosec2 B
Find A, if 0° ≤ A ≤ 90° and 4 sin2 A – 3 = 0
If tanθ = 2, find the values of other trigonometric ratios.
If A + B = 90° and \[\tan A = \frac{3}{4}\]\[\tan A = \frac{3}{4}\] what is cot B?
If \[\frac{160}{3}\] \[\tan \theta = \frac{a}{b}, \text{ then } \frac{a \sin \theta + b \cos \theta}{a \sin \theta - b \cos \theta}\]
If θ is an acute angle such that \[\tan^2 \theta = \frac{8}{7}\] then the value of \[\frac{\left( 1 + \sin \theta \right) \left( 1 - \sin \theta \right)}{\left( 1 + \cos \theta \right) \left( 1 - \cos \theta \right)}\]
Prove that:
cos15° cos35° cosec55° cos60° cosec75° = \[\frac{1}{2}\]
Find the value of the following:
`cot theta/(tan(90^circ - theta)) + (cos(90^circ - theta) tantheta sec(90^circ - theta))/(sin(90^circ - theta)cot(90^circ - theta)"cosec"(90^circ - theta))`