Advertisements
Advertisements
प्रश्न
If A + B = 90° and \[\tan A = \frac{3}{4}\]\[\tan A = \frac{3}{4}\] what is cot B?
उत्तर
Given in question:
`A+B=90°`
tan `A=3/4`
`A+B=90°`
⇒` B=90°-A`
⇒ `Cot B= cot(90°-A)`
⇒` Cot B= tan A`
⇒ `Cot B=3/4[cot (90°-A)=tan A]`
Hence the value of cot B is `3/4`
APPEARS IN
संबंधित प्रश्न
Without using trigonometric tables evaluate the following:
`(i) sin^2 25º + sin^2 65º `
If A, B, C are the interior angles of a triangle ABC, prove that `\tan \frac{B+C}{2}=\cot \frac{A}{2}`
Express the trigonometric ratios sin A, sec A and tan A in terms of cot A.
What is the value of (cos2 67° – sin2 23°)?
Prove the following trigonometric identities.
(cosecA − sinA) (secA − cosA) (tanA + cotA) = 1
if `sin theta = 1/sqrt2` find all other trigonometric ratios of angle θ.
if `3 cos theta = 1`, find the value of `(6 sin^2 theta + tan^2 theta)/(4 cos theta)`
Solve.
`cos55/sin35+cot35/tan55`
Evaluate:
`cos70^circ/(sin20^circ) + cos59^circ/(sin31^circ) - 8 sin^2 30^circ`
Use tables to find sine of 47° 32'
Use tables to find cosine of 8° 12’
Use trigonometrical tables to find tangent of 17° 27'
If the angle θ = –45° , find the value of tan θ.
What is the maximum value of \[\frac{1}{\sec \theta}\]
If 16 cot x = 12, then \[\frac{\sin x - \cos x}{\sin x + \cos x}\]
Prove that :
tan5° tan25° tan30° tan65° tan85° = \[\frac{1}{\sqrt{3}}\]
If sin θ =7/25, where θ is an acute angle, find the value of cos θ.
If sin 3A = cos 6A, then ∠A = ?
In the given figure, if AB = 14 cm, BD = 10 cm and DC = 8 cm, then the value of tan B is ______.
2(sin6 θ + cos6 θ) – 3(sin4 θ + cos4 θ) is equal to ______.