Advertisements
Advertisements
प्रश्न
If sin 3A = cos 6A, then ∠A = ?
उत्तर
sin 3A = cos 6A .....[Given]
∴ sin 3A = sin(90° – 6A) .....[∵ cos θ = sin(90° – θ)]
∴ 3A = 90° – 6A
∴ 3A + 6A = 90°
∴ 9A = 90°
∴ A = `(90^circ)/9`
∴ A = 10°
APPEARS IN
संबंधित प्रश्न
If tan 2θ = cot (θ + 6º), where 2θ and θ + 6º are acute angles, find the value of θ
Express sin 67° + cos 75° in terms of trigonometric ratios of angles between 0° and 45°
Evaluate `(tan 26^@)/(cot 64^@)`
Express the trigonometric ratios sin A, sec A and tan A in terms of cot A.
Write all the other trigonometric ratios of ∠A in terms of sec A.
Without using trigonometric tables evaluate:
`(sin 65^@)/(cos 25^@) + (cos 32^@)/(sin 58^@) - sin 28^2. sec 62^@ + cosec^2 30^@`
Evaluate.
cos225° + cos265° - tan245°
Evaluate.
`(cos^2 32^@+cos^2 58^@)/(sin^2 59^@+sin^2 31^@)`
Show that : sin 42° sec 48° + cos 42° cosec 48° = 2
Use tables to find cosine of 26° 32’
Use tables to find the acute angle θ, if the value of cos θ is 0.9574
Evaluate:
`(5sin66^@)/(cos24^@) - (2cot85^@)/(tan5^@)`
If 0° < A < 90°; find A, if `(cos A )/(1 - sin A) + (cos A)/(1 + sin A) = 4`
If 16 cot x = 12, then \[\frac{\sin x - \cos x}{\sin x + \cos x}\]
The value of \[\frac{\tan 55°}{\cot 35°}\] + cot 1° cot 2° cot 3° .... cot 90°, is
Evaluate:
3 cos 80° cosec 10°+ 2 sin 59° sec 31°
Evaluate: `2(tan57°)/(cot33°) - (cot70°)/(tan20°) - sqrt(2) cos 45°`
`(sin 75^circ)/(cos 15^circ)` = ?
If x tan 45° sin 30° = cos 30° tan 30°, then x is equal to ______.
If x and y are complementary angles, then ______.