Advertisements
Advertisements
प्रश्न
If 0° < A < 90°; find A, if `(cos A )/(1 - sin A) + (cos A)/(1 + sin A) = 4`
उत्तर
`(cos A )/(1 - sin A) + (cos A)/(1 + sin A) = 4`
`=> (cos A + cos A sin A + cos A - sin A cos A)/((1 - sin A)(1 + sin A)) = 4`
`=> (2 cos A)/(1 - sin^2 A) = 4`
`=> (2 cos A)/(cos^2 A) = 4`
`=> 1/cos A = 2`
`=> cos A = 1/2`
We know `cos 60^circ = 1/2`
Hence, A = 60°
APPEARS IN
संबंधित प्रश्न
Show that cos 38° cos 52° − sin 38° sin 52° = 0
Write all the other trigonometric ratios of ∠A in terms of sec A.
What is the value of (cos2 67° – sin2 23°)?
Prove the following trigonometric identities.
(cosecA − sinA) (secA − cosA) (tanA + cotA) = 1
Use tables to find the acute angle θ, if the value of tan θ is 0.2419
Find A, if 0° ≤ A ≤ 90° and cos2 A – cos A = 0
Write the maximum and minimum values of sin θ.
The value of \[\frac{\cos^3 20°- \cos^3 70°}{\sin^3 70° - \sin^3 20°}\]
The value of tan 1° tan 2° tan 3° ...... tan 89° is
In ∆ABC, `sqrt(2)` AC = BC, sin A = 1, sin2A + sin2B + sin2C = 2, then ∠A = ? , ∠B = ?, ∠C = ?