Advertisements
Advertisements
प्रश्न
Write the maximum and minimum values of sin θ.
उत्तर
The maximum value of sinθ is 1 and the minimum value of sinθ is because value of sin θ lies between −1 and 11
APPEARS IN
संबंधित प्रश्न
if `cos theta = 4/5` find all other trigonometric ratios of angles θ
Solve.
`cos55/sin35+cot35/tan55`
Express the following in terms of angles between 0° and 45°:
cosec68° + cot72°
Express the following in terms of angles between 0° and 45°:
cos74° + sec67°
Find the value of x, if sin x = sin 60° cos 30° – cos 60° sin 30°
Find the value of x, if sin x = sin 60° cos 30° + cos 60° sin 30°
Use tables to find sine of 47° 32'
Evaluate:
3 cos 80° cosec 10° + 2 cos 59° cosec 31°
If A and B are complementary angles, prove that:
cot A cot B – sin A cos B – cos A sin B = 0
If A and B are complementary angles, prove that:
cosec2 A + cosec2 B = cosec2 A cosec2 B
If 0° < A < 90°; find A, if `(cos A )/(1 - sin A) + (cos A)/(1 + sin A) = 4`
If the angle θ = –45° , find the value of tan θ.
If θ is an acute angle such that \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\] \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\]
The value of tan 1° tan 2° tan 3° ...... tan 89° is
The value of \[\frac{\tan 55°}{\cot 35°}\] + cot 1° cot 2° cot 3° .... cot 90°, is
Evaluate: `(sin 80°)/(cos 10°)`+ sin 59° sec 31°
If sin 3A = cos 6A, then ∠A = ?
Prove that `"tan A"/"cot A" = (sec^2"A")/("cosec"^2"A")`
In ∆ABC, cos C = `12/13` and BC = 24, then AC = ?
In the given figure, if AB = 14 cm, BD = 10 cm and DC = 8 cm, then the value of tan B is ______.