Advertisements
Advertisements
प्रश्न
If sec 2A = cosec (A – 42°) where 2A is an acute angle. Find the value of A.
उत्तर
We know that (sec (90 – θ)) = cosec θ
Sec 2A = sec (90 – (A – 42))
Sec 2A = sec (90 – A + 42)
Sec 2A = sec (132 – A)
Now equating both the angles we get
2A = 132 – A
`3A = 132/3`
A= 44
APPEARS IN
संबंधित प्रश्न
If A = 30° and B = 60°, verify that cos (A + B) = cos A cos B − sin A sin B
If cos 2θ = sin 4θ where 2θ, 4θ are acute angles, find the value of θ.
If cosec θ = `sqrt(10)` find all the values of all T-ratios of θ
If A = 300 , verify that:
(iii) tan 2A = `(2tanA)/(1-tan^2A)`
sin20° = cos ______°
Given: tan A = `4/3 , "find" : ("cosec""A")/(cot "A"– sec "A")`
In a right-angled triangle, it is given that A is an acute angle and tan A = `(5) /(12)`.
find the value of :
(i) cos A
(ii) sin A
(iii) ` (cosA+sinA)/(cosA– sin A)`
If cot θ= 1; find the value of: 5 tan2 θ+ 2 sin2 θ- 3
In an isosceles triangle ABC, AB = BC = 6 cm and ∠B = 90°. Find the values of cosec C
If cos A = `(2x)/(1 + x^2)`, then find the values of sin A and tan A in terms of x