Advertisements
Advertisements
प्रश्न
If sec 2A = cosec (A – 42°) where 2A is an acute angle. Find the value of A.
उत्तर
We know that (sec (90 – θ)) = cosec θ
Sec 2A = sec (90 – (A – 42))
Sec 2A = sec (90 – A + 42)
Sec 2A = sec (132 – A)
Now equating both the angles we get
2A = 132 – A
`3A = 132/3`
A= 44
APPEARS IN
संबंधित प्रश्न
If A = 300 , verify that:
(iii) tan 2A = `(2tanA)/(1-tan^2A)`
Using the formula, sin A = `sqrt((1-cos 2A)/2) ` find the value of sin 300, it being given that cos 600 = `1/2`
In the following figure:
AD ⊥ BC, AC = 26 CD = 10, BC = 42, ∠DAC = x and ∠B = y.
Find the value of :
(i) cot x
(ii) `1/sin^2 y – 1/tan^2 y`
(iii) `6/cos x – 5/cos y + 8 tan y`.
If sin A = `(sqrt3)/(2)` and cos B = `(sqrt3)/(2)` , find the value of : `(tan"A" – tan"B")/(1+tan"A" tan"B")`
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
tanB = `(8)/(15)`
In an isosceles triangle ABC, AB = BC = 6 cm and ∠B = 90°. Find the values of cos C
In an isosceles triangle ABC, AB = BC = 6 cm and ∠B = 90°. Find the values of cos2 C + cosec2 C
If sin A = `(7)/(25)`, find the value of : `(2"tanA")/"cot A - sin A"`
If cos A = `3/5`, then find the value of `(sin"A" - cos"A")/(2tan"A")`
If A + B = 90°, cot B = `3/4` then tan A is equal to ______.