Advertisements
Advertisements
प्रश्न
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
tanB = `(8)/(15)`
उत्तर
tanB = `(8)/(15)`
tanB = `"Perpendicular"/"Base" = (8)/(15)`
By Pythagoras theorem, we have
(Hypotenuse)2 = (Perpendicular)2 + (Base)2
(Hypotenuse) = `sqrt(("Perpendicular")^2 + ("Base")^2`
= `sqrt((8)^2 + (15)^2`
= `sqrt(64 + 225)`
= `sqrt(289)`
= 17
cot B = `(1)/"tan B" = (15)/(8)`
sin B = `"Perpendicular"/"Hypotenuse" = (8)/(17)`
cos B = `"Base"/"Hypotenuse" = (15)/(17)`
sec B = `(1)/"cos B" = (17)/(15)`
cosec B = `(1)/"sin B" = (17)/(8)`.
APPEARS IN
संबंधित प्रश्न
If A = 30° B = 60° verify Sin (A + B) = Sin A Cos B + cos A sin B
If sin θ = `a/b`, show that `(sectheta + tan theta) = sqrt((b+a)/(b-a))`
If tan `theta = a/b`, show that `((a sin theta - b cos theta))/((a sin theta + bcos theta))= ((a^2-b^2))/(a^2+b^2)`
Evaluate:
`cot^2 30^0-2cos^2 30^0-3/4 sec^2 45^0 +1/4 cosec^2 30^0`
Show that:
(ii) `(cos30^0+sin 60^0)/(1+sin30^0+cos60^0)=cos 30^0`
Verify each of the following:
(iv) `2 sin 45^0 cos 45^0`
If cos A = `(1)/(2)` and sin B = `(1)/(sqrt2)`, find the value of: `(tan"A" – tan"B")/(1+tan"A" tan"B")`.
Are angles A and B from the same triangle? Explain.
If tan x = `1(1)/(3)`, find the value of : 4 sin2x - 3 cos2x + 2
If 3 cos A = 4 sin A, find the value of :
(i) cos A(ii) 3 - cot2 A + cosec2A.
Given q tan A = p, find the value of:
`("p" sin "A" – "q" cos "A")/("p" sin "A" + "q" cos "A")`.