Advertisements
Advertisements
प्रश्न
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
sec B = `(15)/(12)`
उत्तर
sec B = `(15)/(12)`
sec B = `(1)/"cos B" = "Hypotenuse"/"Base" = (15)/(12)`
By Pythagoras theorem, we have
(Hypotenuse)2 = (Perpendicular)2 + (Base)2
⇒ Perpendicular = `sqrt(("Hypotenuse")^2 - ("Base")^2`
⇒ Perpendicular
= `sqrt((15)^2 - (12)^2`
= `sqrt(225 - 144)`
= `sqrt(81)`
= 9
sinB = `"Perpendicular"/"Hypotenuse" = (9)/(15)`
tanB = `"Perpendicular"/"Base" = (9)/(12)`
cotB = `(1)/"tan B" = (12)/(9)`
cosecB = `(1)/"sinB" = (15)/(9)`
cos B = `"Base"/"Hypotenuse" = (12)/(15)`.
APPEARS IN
संबंधित प्रश्न
In right angled triangle ΔABC at B, ∠A = ∠C. Find the values of Sin A cos C + Cos A Sin C
If sec `theta = 17/8 ` verify that `((3-4sin^2theta)/(4 cos^2theta -3))=((3-tan^2theta)/(1-tan^2theta))`
Evaluate:
`2cos^2 60^0+3 sin^2 45^0 - 3 sin^2 30^0 + 2 cos^2 90 ^0`
If A = 300 , verify that:
(i) sin 2A = `(2 tan A)/(1+tan^2A)`
`(cos 28°)/(sin 62°)` = ?
sin20° = cos ______°
tan 30° × tan ______° = 1
Given: tan A = `4/3 , "find" : ("cosec""A")/(cot "A"– sec "A")`
If cosec θ = `sqrt5`, find the value of:
- 2 - sin2 θ - cos2 θ
- 2 + `1/sin^2"θ" – cos^2"θ"/sin^2"θ"`
If sin A = cos A, find the value of 2 tan2A - 2 sec2 A + 5.