Advertisements
Advertisements
प्रश्न
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
cosec C = `sqrt(10)`
उत्तर
cosec C = `sqrt(10)`
cosec C = `(1)/"sin C" = "Hypotenuse"/"Perpendicular" = sqrt(10)/(1)`
By Pythagoras theorem, we have
(Hypotenuse)2 = (Perpendicular)2 + (Base)2
⇒ Base = `sqrt(("Hypotenuse")^2 - ("Perpendicular")^2`
⇒ Base
= `sqrt((sqrt(10))^2 - (1)^2`
= `sqrt(10 - 1)`
= `sqrt(9)`
= 3
sin C = `"Perpendicular"/"Hypotenuse" = (1)/sqrt(10)`
cos C = `"Base"/"Hypotenuse" = (3)/sqrt(10)`
tan C = `"Perpendicular"/"Base" = (1)/(3)`
sec C =`(1)/"cos C" = sqrt(10)/(3)`
cot C = `(1)/"tan A"` = 3.
APPEARS IN
संबंधित प्रश्न
If A = B = 60°. Verify `tan (A - B) = (tan A - tan B)/(1 + tan tan B)`
If `sin (A – B) = 1/2` and `cos (A + B) = 1/2`, `0^@` < A + `B <= 90^@`, A > B Find A and B.
If Sec 4A = cosec (A – 20°) where 4A is an acute angle, find the value of A.
If sec 2A = cosec (A – 42°) where 2A is an acute angle. Find the value of A.
If cos θ=0.6 show that (5sin θ -3tan θ) = 0
In the adjoining figure, ΔABC is right-angled at B and ∠A = 300. If BC = 6cm, find (i) AB, (ii) AC.
In a right-angled triangle, it is given that A is an acute angle and tan A = `(5) /(12)`.
find the value of :
(i) cos A
(ii) sin A
(iii) ` (cosA+sinA)/(cosA– sin A)`
If 5 cos = 6 sin ; evaluate:
(i) tan θ
(ii) `(12 sin θ – 3 cos θ)/(12 sin θ + 3 cos θ)`
In a right-angled triangle PQR, ∠PQR = 90°, QS ⊥ PR and tan R =`(5)/(12)`, find the value of sin ∠PQS
Assertion (A): For 0 < 0 ≤ 90°, cosec θ – cot θ and cosec θ + cot θ are reciprocal of each other.
Reason (R): cot2 θ – cosec2 θ = 1.