Advertisements
Advertisements
Question
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
cosec C = `sqrt(10)`
Solution
cosec C = `sqrt(10)`
cosec C = `(1)/"sin C" = "Hypotenuse"/"Perpendicular" = sqrt(10)/(1)`
By Pythagoras theorem, we have
(Hypotenuse)2 = (Perpendicular)2 + (Base)2
⇒ Base = `sqrt(("Hypotenuse")^2 - ("Perpendicular")^2`
⇒ Base
= `sqrt((sqrt(10))^2 - (1)^2`
= `sqrt(10 - 1)`
= `sqrt(9)`
= 3
sin C = `"Perpendicular"/"Hypotenuse" = (1)/sqrt(10)`
cos C = `"Base"/"Hypotenuse" = (3)/sqrt(10)`
tan C = `"Perpendicular"/"Base" = (1)/(3)`
sec C =`(1)/"cos C" = sqrt(10)/(3)`
cot C = `(1)/"tan A"` = 3.
APPEARS IN
RELATED QUESTIONS
If A = 30° and B = 60°, verify that cos (A + B) = cos A cos B − sin A sin B
If `sin (A – B) = 1/2` and `cos (A + B) = 1/2`, `0^@` < A + `B <= 90^@`, A > B Find A and B.
In right angled triangle ΔABC at B, ∠A = ∠C. Find the values of Sin A cos C + Cos A Sin C
Verify each of the following:
(iii) `2 sin 30^0 cos 30^0`
In a right-angled triangle, it is given that A is an acute angle and tan A = `(5) /(12)`.
find the value of :
(i) cos A
(ii) sin A
(iii) ` (cosA+sinA)/(cosA– sin A)`
In the given figure; ∠C = 90o and D is mid-point of AC.
Find :
(i) `(tan∠CAB)/ (tan∠CDB)` (ii) `(tan∠ABC)/ (tan∠DBC)`
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
tan C = `(5)/(12)`
If sinA = `(3)/(5)`, find cosA and tanA.
In a right-angled triangle PQR, ∠PQR = 90°, QS ⊥ PR and tan R =`(5)/(12)`, find the value of tan ∠SQR
If sin A = `(7)/(25)`, find the value of : cot2A - cosec2A