Advertisements
Advertisements
Question
In a right-angled triangle, it is given that A is an acute angle and tan A = `(5) /(12)`.
find the value of :
(i) cos A
(ii) sin A
(iii) ` (cosA+sinA)/(cosA– sin A)`
Solution
Consider the diagram below :
tan A = `(5)/(12)`
i.e.`"perpendicular"/"base" = (5)/(12) ⇒ "BC"/"AB" = (5)/(12)`
Therefore if length of AB = 12x, length of BC = 5x
Since
AB2 + BC2 = AC2 ...[ Using Pythagoras Theorem ]
(12x)2 + (5x)2 = AC2
AC2 = 144x2 + 25x2
AC2 = 169x2
∴ AC = 13x ...( hypotenuse)
(i) cos A = `"base"/"hypotenuse" = "AB"/"AC" = (12x)/(13x) = 12/13`
(ii) sin A = `"perpendicular"/"hypotenuse" = (5x)/(13x) = 5/13`
(iii) `(cos "A" + sin "A")/(cos "A" – sin "A")`
= `(12/13+5/13)/(12/13 – 5/13)`
= `(17/13)/(17/7)`
= `17/7`
= `2(3)/(7)`
APPEARS IN
RELATED QUESTIONS
In Fig below, Find tan P and cot R. Is tan P = cot R?
If cos θ=0.6 show that (5sin θ -3tan θ) = 0
tan 30° × tan ______° = 1
cos 40° = sin ______°
Given : 17 cos θ = 15;
Find the value of: tan θ + 2 secθ .
If 5 cos = 6 sin ; evaluate:
(i) tan θ
(ii) `(12 sin θ – 3 cos θ)/(12 sin θ + 3 cos θ)`
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
tan C = `(5)/(12)`
In the given figure, PQR is a triangle, in which QS ⊥ PR, QS = 3 cm, PS = 4 cm and QR = 12 cm, find the value of: 4sin2R - `(1)/("tan"^2"P")`
If sin θ = `"a"/sqrt("a"^2 + "b"^2)`, then show that b sin θ = a cos θ
Assertion (A): For 0 < 0 ≤ 90°, cosec θ – cot θ and cosec θ + cot θ are reciprocal of each other.
Reason (R): cot2 θ – cosec2 θ = 1.