Advertisements
Advertisements
Question
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
tan C = `(5)/(12)`
Solution
tan C = `(5)/(12)`
tan C = `"Perpendicular"/"Base" = (5)/(12)`
By Pythagoras theprem, we have
(Hypotenuse)2 = (Perpendicular)2 + (Base)2
(Hypotenuse) = `sqrt(("Perpendicular")^2 + ("Base")^2`
= `sqrt((5)^2 + (12)^2`
= `sqrt(25 + 144)`
= `sqrt(169)`
= 13
cot C = `(1)/"tan C" = (12)/(5)`
sin C = `"Perpendicular"/"Hypotenuse" = (5)/(13)`
cos C = `"Base"/"Hypotenuse" = (12)/(13)`
sec C = `(1)/"cosC" = (13)/(12)`
cosec C = `(1)/"sin C" = (13)/(5)`.
APPEARS IN
RELATED QUESTIONS
If 2θ + 45° and 30° − θ are acute angles, find the degree measure of θ satisfying Sin (20 + 45°) = cos (30 - θ°)
Evaluate:
`(5 cos^2 60^circ + 4 sec^2 30^circ - tan^2 45^circ)/(sin^2 30^circ + cos^2 30^circ)`
Show that:
(i)` (1-sin 60^0)/(cos 60^0)=(tan60^0-1)/(tan60^0+1)`
Show that:
(ii) `(cos30^0+sin 60^0)/(1+sin30^0+cos60^0)=cos 30^0`
If A = 450 , verify that:
(ii) cos 2A = 2 cos2 A – 1 = 1 – 2 sin2 A
Given : sin A = `(3)/(5)` , find : (i) tan A (ii) cos A
In a right-angled triangle, it is given that A is an acute angle and tan A = `(5) /(12)`.
find the value of :
(i) cos A
(ii) sin A
(iii) ` (cosA+sinA)/(cosA– sin A)`
In triangle ABC, AB = AC = 15 cm and BC = 18 cm, find cos ∠ABC.
In ΔABC, ∠B = 90°. If AB = 12units and BC = 5units, find: sinA
In the given figure, PQR is a triangle, in which QS ⊥ PR, QS = 3 cm, PS = 4 cm and QR = 12 cm, find the value of: cot2P - cosec2P