Advertisements
Advertisements
Question
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
cose C = `(15)/(11)`
Solution
cose C = `(15)/(11)`
cose C = `(1)/"sin C" ="Hypotenuse"/"Perpendicular" = (15)/(11)`
By Pythagoras theorem, we have
(Hypotenuse)2 = (Perpendicular)2 + (Base)2
⇒ Base = `sqrt(("Hypotenuse")^2 - ("Perpendicular")^2`
⇒ Base
= `sqrt((15)^2 + (11)^2`
= `sqrt(225 - 121)`
= `sqrt(104)`
sin C = `"Perpendicular"/"Hypotenuse" = (11)/(15)`
cos C = `"Base"/"Hypotenuse" = sqrt(104)/(11)`
tan C = `"Perpendicular"/"Base" = (11)/sqrt(104)`
sec C = `(1)/"cos C" = (15)/(sqrt(104)`
cot C = `(1)/"tan A" = sqrt(104)/(11)`.
APPEARS IN
RELATED QUESTIONS
if `sec theta = 5/4` find the value of `(sin theta - 2 cos theta)/(tan theta - cot theta)`
If cot θ = 2 find all the values of all T-ratios of θ .
If cosec θ = `sqrt(10)` find all the values of all T-ratios of θ
If ∠A and ∠B are acute angles such that tan A= Tan B then prove that ∠A = ∠B
Evaluate:
`(sin^2 30^0 + 4 cot^2 45^0-sec^2 60^0)(cosec^2 45^0 sec^2 30^0)`
In the adjoining figure, ΔABC is right-angled at B and ∠A = 450. If AC = 3`sqrt(2)`cm, find (i) BC, (ii) AB.
In the given figure, triangle ABC is right-angled at B. D is the foot of the perpendicular from B to AC. Given that BC = 3 cm and AB = 4 cm.
find :
- tan ∠DBC
- sin ∠DBA
If sec A = `sqrt2` , find : `(3cot^2 "A"+ 2 sin^2 "A")/ (tan^2 "A" – cos ^2 "A")`.
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
sinB = `sqrt(3)/(2)`
From the given figure, find the values of sec B