English

In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric. sinB = √ 3 2 - Mathematics

Advertisements
Advertisements

Question

In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.

sinB = `sqrt(3)/(2)`

Sum

Solution

sinB = `sqrt(3)/(2)`

sinB = `"Perpendicular"/"Hypotenuse" = sqrt(3)/(2)`

By Pythagoras theorem, we have
(Hypotenuse)2 = (Perpendicular)2 + (Base)2
⇒ Base = `sqrt(("Hypotenuse")^2 - ("Perpendicular")^2`
⇒ Base
`sqrt((2)^2 - (sqrt(3))^2`
= `sqrt(4 - 3)`
= `sqrt(1)`
= 1

cosB = `"Base"/"Hypotenuse" = (1)/(2)`

tanB = `"Perpendicular"/"Base" = sqrt(3)`

secB = `(1)/"cosB"` = 2

cotB = `(1)/"tanB" = (1)/sqrt(3)`

cosecB= `(1)/"sinA" = (2)/sqrt(3)`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 26: Trigonometrical Ratios - Exercise 26.1

APPEARS IN

Frank Mathematics [English] Class 9 ICSE
Chapter 26 Trigonometrical Ratios
Exercise 26.1 | Q 1.06
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×