Advertisements
Advertisements
प्रश्न
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
sinB = `sqrt(3)/(2)`
उत्तर
sinB = `sqrt(3)/(2)`
sinB = `"Perpendicular"/"Hypotenuse" = sqrt(3)/(2)`
By Pythagoras theorem, we have
(Hypotenuse)2 = (Perpendicular)2 + (Base)2
⇒ Base = `sqrt(("Hypotenuse")^2 - ("Perpendicular")^2`
⇒ Base
`sqrt((2)^2 - (sqrt(3))^2`
= `sqrt(4 - 3)`
= `sqrt(1)`
= 1
cosB = `"Base"/"Hypotenuse" = (1)/(2)`
tanB = `"Perpendicular"/"Base" = sqrt(3)`
secB = `(1)/"cosB"` = 2
cotB = `(1)/"tanB" = (1)/sqrt(3)`
cosecB= `(1)/"sinA" = (2)/sqrt(3)`.
APPEARS IN
संबंधित प्रश्न
If A = 30° B = 60° verify Sin (A + B) = Sin A Cos B + cos A sin B
In right angled triangle ΔABC at B, ∠A = ∠C. Find the values of sin A sin B + cos A cos B
In a ΔABC , ∠B = 90° , AB = 12 cm and BC = 5 cm Find
(i) cos A (ii) cosec A (iii) cos C (iv) cosec C
If ∠A and ∠B are acute angles such that tan A= Tan B then prove that ∠A = ∠B
Given: cos A = `( 5 )/ ( 13 )`
Evaluate:
- `(sin "A "–cot "A") / (2 tan "A")`
- `cot "A" + 1/cos"A"`
Given q tan A = p, find the value of:
`("p" sin "A" – "q" cos "A")/("p" sin "A" + "q" cos "A")`.
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
tanB = `(8)/(15)`
In a right-angled triangle PQR, ∠PQR = 90°, QS ⊥ PR and tan R =`(5)/(12)`, find the value of tan ∠SQR
In the given figure, ΔABC is right angled at B.AD divides BC in the ratio 1 : 2. Find
(i) `("tan"∠"BAC")/("tan"∠"BAD")` (ii) `("cot"∠"BAC")/("cot"∠"BAD")`
If sin A = `(7)/(25)`, find the value of : cot2A - cosec2A