Advertisements
Advertisements
प्रश्न
Given q tan A = p, find the value of:
`("p" sin "A" – "q" cos "A")/("p" sin "A" + "q" cos "A")`.
उत्तर
q tan A = p
tan A = `"P"/"q"`
Let P = P & B = q
H2 = P2 + B2
H2 = P2 + q2
H = `sqrt(p^2+q^2)`
`("p" sin "A" – "q" cos "A")/("p" sin "A" + "q" cos "A")`
= `("p sinA"/cos "A" – "q cos A"/cos"A")/("p sin A"/cos "A" + "q cos A"/cos"A")`
= `("p"tan"A" – "q")/ ("p" tan "A" + "q")`
= `("p"(p/q) – "q")/("p"(p/q) + "q")`
= `(("p"^2 – "q"^2)/("q"))/(("p"^2 + "q"^2)/("q"))`
= `("p"^2 – "q"^2)/("p"^2 + "q"^2)`
APPEARS IN
संबंधित प्रश्न
If 𝜃 = 30° verify `cos 2 theta = (1 - tan^2 theta)/(1 + tan^2 theta)`
If ∠A and ∠B are acute angles such that sin A = Sin B prove that ∠A = ∠B.
If x = cosec A +cos A and y = cosec A – cos A then prove that `(2/(x+y))^2 + ((x-y)/2)^2` = 1
If A = 450, verify that :
(i) sin 2A = 2 sin A cos A
Using the formula, sin A = `sqrt((1-cos 2A)/2) ` find the value of sin 300, it being given that cos 600 = `1/2`
Given: sin θ = `p/q`.
Find cos θ + sin θ in terms of p and q.
In triangle ABC, AB = AC = 15 cm and BC = 18 cm. Find:
- cos B
- sin C
- tan2 B - sec2 B + 2
In ΔABC, ∠A = 90°. If AB = 5 units and AC = 12 units, find: sinB
If sin A = `(7)/(25)`, find the value of : `(2"tanA")/"cot A - sin A"`
From the given figure, find all the trigonometric ratios of angle B