Advertisements
Advertisements
प्रश्न
If x = cosec A +cos A and y = cosec A – cos A then prove that `(2/(x+y))^2 + ((x-y)/2)^2` = 1
उत्तर
LHS = `(2/(x+y))^2 + ((x-y)/2)^2 - 1`
=`[2/((cosec A + cos A)+(cosec A - cos A))]^2 + [((cosecA+cosA)-(cosecA-cosA))/2]^2 - 1`
=`[2/(cosecA + cosA + cosecA-cosA)]^2 + [(cosecA +cosA-cosecA+cosA)/2]^2-1`
=`[2/(2cosecA)]^2 + [(2 cosA)/2]^2-1`
=`[1/(cosecA)]^2 + [cosA]^2-1`
=`[sinA]^2 + [cosA]^2-1`
=`sin^2 A + cos^2 A-1`
=1-1
=0
=RHS
APPEARS IN
संबंधित प्रश्न
If θ = 30° verify `tan 2 theta = (2 tan theta)/(1 - tan^2 theta)`
If sec 2A = cosec (A – 42°) where 2A is an acute angle. Find the value of A.
If sin θ ,` sqrt (3)/2` find the value of all T- ratios of θ .
If cosec θ = `sqrt(10)` find all the values of all T-ratios of θ
In a ΔABC , ∠B = 90° , AB= 24 cm and BC = 7 cm find (i) sin A (ii) cos A (iii) sin C (iv) cos C
Evaluate:
`4/(cot^2 30^0) +1/(sin^2 30^0) -2 cos^2 45^0 - sin^2 0^0`
If sin (A+B) = sin A cos B + cos A sin B and cos (A-B) = cos A cos B + sin A sin B
(i) sin (750)
(ii) cos (150)
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
tan C = `(5)/(12)`
If cosB = `(1)/(3)` and ∠C = 90°, find sin A, and B and cot A.
If 2 cos θ = `sqrt(3)`, then find all the trigonometric ratios of angle θ