Advertisements
Advertisements
प्रश्न
If sin θ ,` sqrt (3)/2` find the value of all T- ratios of θ .
उत्तर
Let us first draw a right ΔABC, right angled at B and ∠𝐶 = 𝜃
Now, we know that sin 𝜃 = `"𝑃𝑟𝑒𝑝𝑒𝑛𝑑𝑖𝑐𝑢𝑙𝑎𝑟 "/"ℎ𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠𝑒" = (AB)/ (AC) = sqrt(3)/2`
So, if AB = `sqrt(3)`𝑘, 𝑡ℎ𝑒𝑛 𝐴𝐶 = 2𝑘, 𝑤ℎ𝑒𝑟𝑒 𝑘 𝑖𝑠 𝑎 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑛𝑢𝑚𝑏𝑒𝑟.
Now, using Pythagoras theorem, we have:
`AC^2 = AB^2 + BC^2`
`⟹ BC^2 = AC^2 − AB^2 = (2K)^2 − (sqrt(3)K)^2`
`⟹ BC^2 = 4K^2 − 3K^2 = K^2`
⟹ BC = k
Now, finding the other T-rations using their definitions, we get:
Cos 𝜃 =` (BC)/(AC) = K/(2K)= 1/2`
Tan 𝜃 =`(AB)/(BC) = (sqrt(3K))/K = sqrt(3)`
∴ cot 𝜃 =`1/(Tan θ ) = 1/sqrt(3), cosec θ = 1/(sin θ) = 2/(sqrt(3)) and sec θ = 1/ (cos θ) = 2 `
APPEARS IN
संबंधित प्रश्न
If tan θ =`15/ 8 `, find the values of all T-ratios of θ.
If cos θ = `3/5` , show that `((sin theta - cot theta ))/(2tan theta)=3/160`
If 3 cot θ 4 , show that`((1-tan^2theta))/((1+tan^2theta)) = (cos^2theta - sin^2theta)`
Evaluate:
cos600 cos300− sin600 sin300
Evaluate:
`(sin^2 30^0 + 4 cot^2 45^0-sec^2 60^0)(cosec^2 45^0 sec^2 30^0)`
From the following figure, find the values of:
- sin A
- cos A
- cot A
- sec C
- cosec C
- tan C
In the given figure;
BC = 15 cm and sin B = `(4)/(5)`
- Calculate the measure of AB and AC.
- Now, if tan ∠ADC = 1; calculate the measures of CD and AD.
Also, show that: tan2B - `1/cos^2 "B" = – 1 .`
Given : 17 cos θ = 15;
Find the value of: tan θ + 2 secθ .
In ΔABC, ∠B = 90°. If AB = 12units and BC = 5units, find: tan A
If cos A = `3/5`, then find the value of `(sin"A" - cos"A")/(2tan"A")`