Advertisements
Advertisements
प्रश्न
Given : 17 cos θ = 15;
Find the value of: tan θ + 2 secθ .
उत्तर
Consider the diagram below :
17 cos θ = 15
cos θ = `(15)/(17)`
i.e `"base"/"hypotenuse" = (15)/(17) ⇒ "AB"/"AC" = (15)/(17)`
Therefore if length of AB = 15x, length of AC = 17x
Since
AB2 + BC2 = AC2 ...[ Using Pythagoras Theorem ]
(17x)2 – (15x)2 = BC2
BC2 = 64x2
∴ BC = 8x ...( perpendicular)
Now
sec θ = `"AC"/"AB" = (17)/(15)`
tan θ = `"BC"/"AB" = (8)/(15)`
Therefore
tan θ +2 sec θ
= `(8)/(15) + 2. (17)/(15)`
= `(42)/(15)`
= `(14)/(5)`
= `2(4)/(5)`
APPEARS IN
संबंधित प्रश्न
If `sin A = 9/41` compute cos 𝐴 𝑎𝑛𝑑 tan 𝐴
In a ΔABC, right angled at A, if tan C = `sqrt3` , find the value of sin B cos C + cos B sin C.
If 𝜃 = 30° verify `cos 2 theta = (1 - tan^2 theta)/(1 + tan^2 theta)`
In rectangle ABCD AB = 20cm ∠BAC = 60° BC, calculate side BC and diagonals AC and BD.
If cosec θ = `sqrt(10)` find all the values of all T-ratios of θ
If tan `theta = a/b`, show that `((a sin theta - b cos theta))/((a sin theta + bcos theta))= ((a^2-b^2))/(a^2+b^2)`
If A = 600 and B = 300, verify that:
(i) sin (A + B) = sin A cos B + cos A sin B
If A = 600 and B = 300, verify that:
(ii) cos (A – B) = cos A cos B + sin A sin B
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
sinB = `sqrt(3)/(2)`
In a right-angled triangle PQR, ∠PQR = 90°, QS ⊥ PR and tan R =`(5)/(12)`, find the value of tan ∠SQR