Advertisements
Advertisements
рдкреНрд░рд╢реНрди
If tan `theta = a/b`, show that `((a sin theta - b cos theta))/((a sin theta + bcos theta))= ((a^2-b^2))/(a^2+b^2)`
рдЙрддреНрддрд░
It is given that tan `theta = a/b`
LHS = `(a sin theta - b cos theta )/(a sin theta + b cos theta)`
Dividing the numerator and denominator by cos ЁЭЬГ, ЁЭСдЁЭСТ ЁЭСФЁЭСТЁЭСб:
`(a tan theta-b)/(a tan theta +b) (∴ tan theta = (sin theta)/(cos theta))`
Now, substituting the value of tan ЁЭЬГ ЁЭСЦЁЭСЫ ЁЭСбтДОЁЭСТ ЁЭСОЁЭСПЁЭСЬЁЭСгЁЭСТ ЁЭСТЁЭСеЁЭСЭЁЭСЯЁЭСТЁЭСаЁЭСаЁЭСЦЁЭСЬЁЭСЫ, ЁЭСдЁЭСТ ЁЭСФЁЭСТЁЭСб:
`(a(a/b)-b)/(a(a/b)+b)`
=`(a^2/b-b)/(a^2/b+b)`
= `(a^2 - b^2)/(a^2+b^2) = `RHS
i.e., LHS = RHS
Hence proved.
APPEARS IN
рд╕рдВрдмрдВрдзрд┐рдд рдкреНрд░рд╢реНрди
If 3cos θ – 4sin = 2cos θ + sin θ Find tan θ.
If A = B = 60°, verify that sin (A − B) = sin A cos B − cos A sin B
If cosec θ = `sqrt(10)` find all the values of all T-ratios of θ
If tan θ = `1/sqrt(7) `show that ` (cosec ^2 θ - sec^2 θ)/(cosec^2 θ + sec^2 θ ) = 3/4`
Evaluate:
`2cos^2 60^0+3 sin^2 45^0 - 3 sin^2 30^0 + 2 cos^2 90 ^0`
If sec A = `sqrt2`, find the value of :
`(3cos^2"A"+5tan^2"A")/(4tan^4"A"–sin^2"A")`
In ΔABC, ∠B = 90°. If AB = 12units and BC = 5units, find: cot C
If sin A = `(7)/(25)`, find the value of : `(2"tanA")/"cot A - sin A"`
If cosec θ = `(29)/(20)`, find the value of: `("sec" θ)/("tan" θ - "cosec" θ)`
If cos A = `(2x)/(1 + x^2)`, then find the values of sin A and tan A in terms of x