Advertisements
Advertisements
प्रश्न
If 3tan θ 4 , show that `((4cos theta - sin theta ))/((4 cos theta + sin theta))=4/5`
उत्तर
Let us consider a right ΔABC right angled at B and ∠𝐶 = 𝜃.
We know that tan 𝜃 =`(AB)/(BC) = 4/3`
So, if BC = 3k, then AB = 4k, where k is a positive number.
Using Pythagoras theorem, we have:
`AC^2 = AB^2 + BC^2`
`⟹ AC^2 = 16K^2 + 9K^2`
`⟹ AC^2 = 25K^2`
⟹ AC = 5k
Now, we have:
`sin theta = (AB)/(AC) = (4K)/(5K)=4/5`
`Cos theta = (BC)/(AC) = (3K)/(5K)=3/5`
Substituting these values in the given expression, we get:
`(4 cos theta - sin theta)/(2 cos theta + sin theta)`
`= (4(3/5)-4/5)/(2 (3/5)+4/5)`
`= (12/5-4/5)/(6/5+4/5)`
`= ((12-4)/5)/((6+4)/5)`
`= 8/10 = 4/5 = RHS`
i.e., LHS = RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
If A = B = 60°, verify that sin (A − B) = sin A cos B − cos A sin B
If A and B are acute angles such that tan A = 1/2, tan B = 1/3 and tan (A + B) = `(tan A + tan B)/(1- tan A tan B)` A + B = ?
If tan θ =`15/ 8 `, find the values of all T-ratios of θ.
If sin ∝ = `1/2` prove that (3cos∝ - `4cos^2` ∝)=0
Evaluate:
`(sin^2 30^0 + 4 cot^2 45^0-sec^2 60^0)(cosec^2 45^0 sec^2 30^0)`
In the diagram, given below, triangle ABC is right-angled at B and BD is perpendicular to AC.
Find:
(i) cos ∠DBC
(ii) cot ∠DBA
In the given figure; ∠C = 90o and D is mid-point of AC.
Find :
(i) `(tan∠CAB)/ (tan∠CDB)` (ii) `(tan∠ABC)/ (tan∠DBC)`
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
tan C = `(5)/(12)`
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
tanB = `(8)/(15)`
Given that sin α = `1/2` and cos β = `1/2`, then the value of α + β is ______.