Advertisements
Advertisements
рдкреНрд░рд╢реНрди
If 3 cot `theta = 2, `show that `((4 sin theta - 4 cos theta))/((2 sin theta + 6 cos theta ))=1/3`
рдЙрддреНрддрд░
It is given that cos ЁЭЬГ = `2/3`
LHS = `( 4 sin theta -3 cos theta)/(2 sin theta + 6 cos theta)`
Dividing the above expression by sin ЁЭЬГ, ЁЭСдЁЭСТ ЁЭСФЁЭСТЁЭСб:
`(4-3 cot theta)/(2+6 cot theta) [тИ╡ cot theta = (cos theta)/(sin theta)]`
Now, substituting the values of cot ЁЭЬГ ЁЭСЦЁЭСЫ ЁЭСбтДОЁЭСТ ЁЭСОЁЭСПЁЭСЬЁЭСгЁЭСТ ЁЭСТЁЭСеЁЭСЭЁЭСЯЁЭСТЁЭСаЁЭСаЁЭСЦЁЭСЬЁЭСЫ, ЁЭСдЁЭСТ ЁЭСФЁЭСТЁЭСб:
`(4-3(2/3))/(2+6(2/3))`
=`(4-2)/(2+4)=2/6=1/3`
i.e., LHS = RHS
Hence proved.
APPEARS IN
рд╕рдВрдмрдВрдзрд┐рдд рдкреНрд░рд╢реНрди
If A, B, C are the interior angles of a ΔABC, show that `cos[(B+C)/2] = sin A/2`
If sin θ = ` (a^2 - b^2)/(a^2+b^2)`find all the values of all T-ratios of θ .
In the figure of ΔPQR , ∠P = θ° and ∠R =∅° find
(i) `sqrt(X +1) cot ∅`
(ii)`sqrt( x^3 + x ^2) tantheta`
(iii) cos θ
Evaluate:
`(sin^2 30^0 + 4 cot^2 45^0-sec^2 60^0)(cosec^2 45^0 sec^2 30^0)`
If 5 cos = 6 sin ; evaluate:
(i) tan θ
(ii) `(12 sin θ – 3 cos θ)/(12 sin θ + 3 cos θ)`
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
cos A = `(7)/(25)`
If cosec θ = `(29)/(20)`, find the value of: `("sec" θ)/("tan" θ - "cosec" θ)`
From the given figure, find all the trigonometric ratios of angle B
From the given figure, find the values of cosec C
Assertion (A): For 0 < 0 ≤ 90°, cosec θ – cot θ and cosec θ + cot θ are reciprocal of each other.
Reason (R): cot2 θ – cosec2 θ = 1.