Advertisements
Advertisements
рдкреНрд░рд╢реНрди
If 3 cot `theta = 2, `show that `((4 sin theta - 4 cos theta))/((2 sin theta + 6 cos theta ))=1/3`
рдЙрддреНрддрд░
It is given that cos ЁЭЬГ = `2/3`
LHS = `( 4 sin theta -3 cos theta)/(2 sin theta + 6 cos theta)`
Dividing the above expression by sin ЁЭЬГ, ЁЭСдЁЭСТ ЁЭСФЁЭСТЁЭСб:
`(4-3 cot theta)/(2+6 cot theta) [тИ╡ cot theta = (cos theta)/(sin theta)]`
Now, substituting the values of cot ЁЭЬГ ЁЭСЦЁЭСЫ ЁЭСбтДОЁЭСТ ЁЭСОЁЭСПЁЭСЬЁЭСгЁЭСТ ЁЭСТЁЭСеЁЭСЭЁЭСЯЁЭСТЁЭСаЁЭСаЁЭСЦЁЭСЬЁЭСЫ, ЁЭСдЁЭСТ ЁЭСФЁЭСТЁЭСб:
`(4-3(2/3))/(2+6(2/3))`
=`(4-2)/(2+4)=2/6=1/3`
i.e., LHS = RHS
Hence proved.
APPEARS IN
рд╕рдВрдмрдВрдзрд┐рдд рдкреНрд░рд╢реНтАНрди
Given 15 cot A = 8. Find sin A and sec A.
If A = 30° and B = 60°, verify that cos (A + B) = cos A cos B − sin A sin B
If sin 3θ = cos (θ – 6°) where 3θ and θ − 6° are acute angles, find the value of θ.
If cos θ = `3/5` , show that `((sin theta - cot theta ))/(2tan theta)=3/160`
Evaluate:
`2cos^2 60^0+3 sin^2 45^0 - 3 sin^2 30^0 + 2 cos^2 90 ^0`
Given: 4 cot A = 3
find :
(i) sin A
(ii) sec A
(iii) cosec2A - cot2A.
In triangle ABC; ∠ABC = 90°, ∠CAB = x°, tan x° = `(3)/(4)` and BC = 15 cm. Find the measures of AB and AC.
If 5 cos θ = 3, evaluate : `(co secθ – cot θ)/(co secθ + cot θ)`
If sin A = `(7)/(25)`, find the value of : `(2"tanA")/"cot A - sin A"`
Statement A (Assertion): For 0 < θ ≤ 90°, cosec θ – cot θ and cosec θ + cot θ are reciprocal of each other.
Statement R (Reason): cosec2 θ – cot2 θ = 1