Advertisements
Advertisements
प्रश्न
If sin A = `(7)/(25)`, find the value of : `(2"tanA")/"cot A - sin A"`
उत्तर
Consider ΔABC, where ∠B = 90°
⇒ sin A = `"Perpendicular"/"Hypotenuse" = "BC"/"AC" = (7)/(25)`
⇒ cosec A = `(1)/"sin A" = (25)/(7)`
By Pythagoras theorem,
AC2 = AB2 + BC2
⇒ AB2
= AC2 - BC2
= 252 - 72
= 625 - 49
= 576
⇒ AB - 24
Now,
cos A = `"Base"/"Hypotenuse" = "AB"/"AC" = (24)/(25)`
tan A = `"Perpendicular"/"Base" = "BC"/"AB" = (7)/(24)`
⇒ cot A = `(1)/"tan A" = (24)/(7)`
`(2"tan A")/"cot A - sin A"`
= `(2 xx 7/24)/(24 / 7 - 7 /25)`
= `(7/12)/(551/175)`
= `(7)/(12) xx (175)/(551)`
= `(1225)/(6612)`.
APPEARS IN
संबंधित प्रश्न
In rectangle ABCD AB = 20cm ∠BAC = 60° BC, calculate side BC and diagonals AC and BD.
If x = cosec A +cos A and y = cosec A – cos A then prove that `(2/(x+y))^2 + ((x-y)/2)^2` = 1
Evaluate:
cos600 cos300− sin600 sin300
Given: sec A = `( 29 )/(21), "evaluate : sin A" - 1/tan "A"`
In the given figure; ∠C = 90o and D is mid-point of AC.
Find :
(i) `(tan∠CAB)/ (tan∠CDB)` (ii) `(tan∠ABC)/ (tan∠DBC)`
If 2 sin x = `sqrt3` , evaluate.
(i) 4 sin3 x - 3 sin x.
(ii) 3 cos x - 4 cos3 x.
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
tan C = `(5)/(12)`
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
sinB = `sqrt(3)/(2)`
If tan = 0.75, find the other trigonometric ratios for A.
If sin A = `(7)/(25)`, find the value of : `"cos A" + (1)/"cot A"`