Advertisements
Advertisements
प्रश्न
If 2 sin x = `sqrt3` , evaluate.
(i) 4 sin3 x - 3 sin x.
(ii) 3 cos x - 4 cos3 x.
उत्तर
2 sin x = `sqrt3`
sin x = `sqrt3 /(2)`
i.e.`"perpendicular"/"base" = "BC"/"AC" = sqrt3/(2)`
Therefore if length of perpendicular = `sqrt3x` , length of = 2x
Since
AB2 + BC2 = AC2 ...[ Using Pythagoras Theorem]
(2x)2 – (`sqrt3x`)2 = AB2
AB2 = x2
∴ AB = x
Now, cos x = `"AB"/"AC" = (1)/(2)`
(i) 4 sin3 x – 3sin x
= `4 (sqrt3/2)^3 – 3(sqrt3/2)`
= `(3sqrt3)/2 – (3sqrt3)/2`
= 0
(ii) 3 cos x – 4 cos3 x
= `3 * (1)/(2) – 4 * (1/2)^3`
= `3 * 1/2 - 4 * 1/8`
= `3 * 1/2 - cancel4^1 * 1/cancel8_2`
= `3/2 – 1/2`
= 1
APPEARS IN
संबंधित प्रश्न
If A = 30° B = 60° verify Sin (A + B) = Sin A Cos B + cos A sin B
If sin θ = ` (a^2 - b^2)/(a^2+b^2)`find all the values of all T-ratios of θ .
If cot θ = `3/4` , show that `sqrt("sec θ - cosecθ"/"secθ + cosecθ" ) = 1/ sqrt(7)`
If 3 cot θ 4 , show that`((1-tan^2theta))/((1+tan^2theta)) = (cos^2theta - sin^2theta)`
cos 40° = sin ______°
Prove that
sin (50° + θ ) − cos (40° − θ) + tan 1° tan 10° tan 80° tan 89° = 1.
Form the following figure, find the values of:
- cos B
- tan C
- sin2B + cos2B
- sin B. cos C + cos B. sin C
In a right-angled triangle, it is given that A is an acute angle and tan A = `(5) /(12)`.
find the value of :
(i) cos A
(ii) sin A
(iii) ` (cosA+sinA)/(cosA– sin A)`
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
tan C = `(5)/(12)`
In ΔABC, ∠A = 90°. If AB = 5 units and AC = 12 units, find: cos C