Advertisements
Advertisements
प्रश्न
If 2 sin x = `sqrt3` , evaluate.
(i) 4 sin3 x - 3 sin x.
(ii) 3 cos x - 4 cos3 x.
उत्तर
2 sin x = `sqrt3`
sin x = `sqrt3 /(2)`
i.e.`"perpendicular"/"base" = "BC"/"AC" = sqrt3/(2)`
Therefore if length of perpendicular = `sqrt3x` , length of = 2x
Since
AB2 + BC2 = AC2 ...[ Using Pythagoras Theorem]
(2x)2 – (`sqrt3x`)2 = AB2
AB2 = x2
∴ AB = x
Now, cos x = `"AB"/"AC" = (1)/(2)`
(i) 4 sin3 x – 3sin x
= `4 (sqrt3/2)^3 – 3(sqrt3/2)`
= `(3sqrt3)/2 – (3sqrt3)/2`
= 0
(ii) 3 cos x – 4 cos3 x
= `3 * (1)/(2) – 4 * (1/2)^3`
= `3 * 1/2 - 4 * 1/8`
= `3 * 1/2 - cancel4^1 * 1/cancel8_2`
= `3/2 – 1/2`
= 1
APPEARS IN
संबंधित प्रश्न
If A = 30° and B = 60°, verify that cos (A + B) = cos A cos B − sin A sin B
If sin θ ,` sqrt (3)/2` find the value of all T- ratios of θ .
If A = 600 and B = 300, verify that:
cos (A + B) = cos A cos B - sin A sin B
Using the formula, tan 2A =`(2 tan A )/(1- tan^2 A)` find the value of tan 600, it being given that tan 300 = `1/sqrt(3)`.
`(cos 28°)/(sin 62°)` = ?
Given: cos A = `( 5 )/ ( 13 )`
Evaluate:
- `(sin "A "–cot "A") / (2 tan "A")`
- `cot "A" + 1/cos"A"`
Given: sec A = `( 29 )/(21), "evaluate : sin A" - 1/tan "A"`
Given : 17 cos θ = 15;
Find the value of: tan θ + 2 secθ .
In triangle ABC, AB = AC = 15 cm and BC = 18 cm. Find:
- cos B
- sin C
- tan2 B - sec2 B + 2
In ΔABC, ∠A = 90°. If AB = 5 units and AC = 12 units, find: tan B.