Advertisements
Advertisements
प्रश्न
Using the formula, tan 2A =`(2 tan A )/(1- tan^2 A)` find the value of tan 600, it being given that tan 300 = `1/sqrt(3)`.
उत्तर
A = 300
⇒ 2A = 2 × 300 = 600
By substituting the value of the given T-ratio, we get:
tan 2A = `(2 tan A )/(1- tan^2 A)`
`⇒ tan 60^0 = (2 tan 30^0)/(1- tan^2 30^0) = (2xx (1/sqrt(3)))/(1-(1/sqrt(3))^2 ` =` ((2/sqrt(3)))/(1-1/3) = ((2/sqrt(3)))/(2/3) = (2/sqrt(3))= 3/2 = sqrt(3) `
∴tan` 60^0 = sqrt(3)`.
APPEARS IN
संबंधित प्रश्न
If A = B = 60°, verify that cos (A − B) = cos A cos B + sin A sin B
In ∆PQR, right-angled at Q, PQ = 3 cm and PR = 6 cm. Determine ∠P and ∠R.
If sin θ = ` (a^2 - b^2)/(a^2+b^2)`find all the values of all T-ratios of θ .
Evaluate:
`(5 cos^2 60^circ + 4 sec^2 30^circ - tan^2 45^circ)/(sin^2 30^circ + cos^2 30^circ)`
Prove that
cosec (65 °+ θ) sec (25° − θ) − tan (55° − θ) + cot (35° + θ) = 0
In the following figure:
AD ⊥ BC, AC = 26 CD = 10, BC = 42, ∠DAC = x and ∠B = y.
Find the value of :
(i) cot x
(ii) `1/sin^2 y – 1/tan^2 y`
(iii) `6/cos x – 5/cos y + 8 tan y`.
In the given figure;
BC = 15 cm and sin B = `(4)/(5)`
- Calculate the measure of AB and AC.
- Now, if tan ∠ADC = 1; calculate the measures of CD and AD.
Also, show that: tan2B - `1/cos^2 "B" = – 1 .`
In rectangle ABCD, diagonal BD = 26 cm and cotangent of angle ABD = 1.5. Find the area and the perimeter of the rectangle ABCD.
If cosec A + sin A = 5`(1)/(5)`, find the value of cosec2A + sin2A.
In ΔABC, ∠B = 90°. If AB = 12units and BC = 5units, find: sinA