Advertisements
Advertisements
प्रश्न
Prove that
cosec (65 °+ θ) sec (25° − θ) − tan (55° − θ) + cot (35° + θ) = 0
उत्तर
\[\begin{array}{l}\text{ L.H.S}=cosec( {65}^0 + \theta) - \sec( {25}^0 - \theta) - \tan( {55}^0 - \theta) + \cot( {35}^0 + \theta) \\ \end{array}\]
\[\begin{array}{l}= \ cosec{ {90}^0 - ( {25}^0 - \theta)} - \sec( {25}^0 - \theta) - \tan( {55}^0 - \theta) + \cot{ {90}^0 -( {55}^0 - \theta)} \\ \end{array}\]
\[\begin{array}{l}= \sec( {25}^0 - \theta) - \sec( {25}^0 - \theta) - \tan( {55}^0 - \theta) + \tan( {55}^0 -\theta) \\ \end{array}\]
= 0
= RHS
APPEARS IN
संबंधित प्रश्न
if `sin theta = 3/5 " evaluate " (cos theta - 1/(tan theta))/(2 cot theta)`
In right angled triangle ΔABC at B, ∠A = ∠C. Find the values of Sin A cos C + Cos A Sin C
In a ΔABC , ∠B = 90° , AB= 24 cm and BC = 7 cm find (i) sin A (ii) cos A (iii) sin C (iv) cos C
From the following figure, find:
(i) y
(ii) sin x°
(iii) (sec x° - tan x°) (sec x° + tan x°)
If 8 tanθ = 15, find (i) sinθ, (ii) cotθ, (iii) sin2θ - cot2θ
In the given figure, PQR is a triangle, in which QS ⊥ PR, QS = 3 cm, PS = 4 cm and QR = 12 cm, find the value of: cot2P - cosec2P
In the given figure, AD is the median on BC from A. If AD = 8 cm and BC = 12 cm, find the value of sin x
In a right-angled triangle PQR, ∠PQR = 90°, QS ⊥ PR and tan R =`(5)/(12)`, find the value of tan ∠SQR
In the given figure, ΔABC is right angled at B.AD divides BC in the ratio 1 : 2. Find
(i) `("tan"∠"BAC")/("tan"∠"BAD")` (ii) `("cot"∠"BAC")/("cot"∠"BAD")`
If cos θ : sin θ = 1 : 2, then find the value of `(8costheta - 2sintheta)/(4costheta + 2sintheta`